
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Hadoop Operations

Eric Sammer

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

Hadoop Operations
by Eric Sammer

Copyright © 2012 Eric Sammer. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Courtney Nash
Production Editor: Melanie Yarbrough
Copyeditor: Audrey Doyle

Indexer: Jay Marchand
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

September 2012: First Edition.

Revision History for the First Edition:
2012-09-25 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449327057 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Hadoop Operations, the cover image of a spotted cavy, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32705-7

[LSI]

1348583608

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449327057
http://www.it-ebooks.info/

For Aida.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface . ix

1. Introduction . 1

2. HDFS . 7
Goals and Motivation 7
Design 8
Daemons 9
Reading and Writing Data 11

The Read Path 12
The Write Path 13

Managing Filesystem Metadata 14
Namenode High Availability 16
Namenode Federation 18
Access and Integration 20

Command-Line Tools 20
FUSE 23
REST Support 23

3. MapReduce . 25
The Stages of MapReduce 26
Introducing Hadoop MapReduce 33

Daemons 34
When It All Goes Wrong 36

YARN 37

4. Planning a Hadoop Cluster . 41
Picking a Distribution and Version of Hadoop 41

Apache Hadoop 41
Cloudera’s Distribution Including Apache Hadoop 42
Versions and Features 42

v

www.it-ebooks.info

http://www.it-ebooks.info/

What Should I Use? 44
Hardware Selection 45

Master Hardware Selection 46
Worker Hardware Selection 48
Cluster Sizing 50
Blades, SANs, and Virtualization 52

Operating System Selection and Preparation 54
Deployment Layout 54
Software 56
Hostnames, DNS, and Identification 57
Users, Groups, and Privileges 60

Kernel Tuning 62
vm.swappiness 62
vm.overcommit_memory 62

Disk Configuration 63
Choosing a Filesystem 64
Mount Options 66

Network Design 66
Network Usage in Hadoop: A Review 67
1 Gb versus 10 Gb Networks 69
Typical Network Topologies 69

5. Installation and Configuration . 75
Installing Hadoop 75

Apache Hadoop 76
CDH 80

Configuration: An Overview 84
The Hadoop XML Configuration Files 87

Environment Variables and Shell Scripts 88
Logging Configuration 90
HDFS 93

Identification and Location 93
Optimization and Tuning 95
Formatting the Namenode 99
Creating a /tmp Directory 100

Namenode High Availability 100
Fencing Options 102
Basic Configuration 104
Automatic Failover Configuration 105
Format and Bootstrap the Namenodes 108

Namenode Federation 113
MapReduce 120

Identification and Location 120

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Optimization and Tuning 122
Rack Topology 130
Security 133

6. Identity, Authentication, and Authorization . 135
Identity 137
Kerberos and Hadoop 137

Kerberos: A Refresher 138
Kerberos Support in Hadoop 140

Authorization 153
HDFS 153
MapReduce 155
Other Tools and Systems 159

Tying It Together 164

7. Resource Management . 167
What Is Resource Management? 167
HDFS Quotas 168
MapReduce Schedulers 170

The FIFO Scheduler 171
The Fair Scheduler 173
The Capacity Scheduler 185
The Future 193

8. Cluster Maintenance . 195
Managing Hadoop Processes 195

Starting and Stopping Processes with Init Scripts 195
Starting and Stopping Processes Manually 196

HDFS Maintenance Tasks 196
Adding a Datanode 196
Decommissioning a Datanode 197
Checking Filesystem Integrity with fsck 198
Balancing HDFS Block Data 202
Dealing with a Failed Disk 204

MapReduce Maintenance Tasks 205
Adding a Tasktracker 205
Decommissioning a Tasktracker 206
Killing a MapReduce Job 206
Killing a MapReduce Task 207
Dealing with a Blacklisted Tasktracker 207

9. Troubleshooting . 209
Differential Diagnosis Applied to Systems 209

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

Common Failures and Problems 211
Humans (You) 211
Misconfiguration 212
Hardware Failure 213
Resource Exhaustion 213
Host Identification and Naming 214
Network Partitions 214

“Is the Computer Plugged In?” 215
E-SPORE 215

Treatment and Care 217
War Stories 220

A Mystery Bottleneck 221
There’s No Place Like 127.0.0.1 224

10. Monitoring . 229
An Overview 229
Hadoop Metrics 230

Apache Hadoop 0.20.0 and CDH3 (metrics1) 231
Apache Hadoop 0.20.203 and Later, and CDH4 (metrics2) 237
What about SNMP? 239

Health Monitoring 239
Host-Level Checks 240
All Hadoop Processes 242
HDFS Checks 244
MapReduce Checks 246

11. Backup and Recovery . 249
Data Backup 249

Distributed Copy (distcp) 250
Parallel Data Ingestion 252

Namenode Metadata 254

Appendix: Deprecated Configuration Properties . 257

Index . 267

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does

ix

www.it-ebooks.info

http://www.it-ebooks.info/

require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Hadoop Operations by Eric Sammer
(O’Reilly). Copyright 2012 Eric Sammer, 978-1-449-32705-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/hadoop_operations.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

x | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/hadoop_operations
mailto:bookquestions@oreilly.com
http://www.it-ebooks.info/

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
I want to thank Aida Escriva-Sammer, my wife, best friend, and favorite sysadmin, for
putting up with me while I wrote this.

None of this was possible without the support and hard work of the larger Apache
Hadoop community and ecosystem projects. I want to encourage all readers to get
involved in the community and open source in general.

Matt Massie gave me the opportunity to do this, along with O’Reilly, and then cheered
me on the whole way. Both Matt and Tom White coached me through the proposal
process. Mike Olson, Omer Trajman, Amr Awadallah, Peter Cooper-Ellis, Angus Klein,
and the rest of the Cloudera management team made sure I had the time, resources,
and encouragement to get this done. Aparna Ramani, Rob Weltman, Jolly Chen, and
Helen Friedland were instrumental throughout this process and forgiving of my con-
stant interruptions of their teams. Special thanks to Christophe Bisciglia for giving me
an opportunity at Cloudera and for the advice along the way.

Many people provided valuable feedback and input throughout the entire process, but
especially Aida Escriva-Sammer, Tom White, Alejandro Abdelnur, Amina Abdulla,
Patrick Angeles, Paul Battaglia, Will Chase, Yanpei Chen, Eli Collins, Joe Crobak, Doug
Cutting, Joey Echeverria, Sameer Farooqui, Andrew Ferguson, Brad Hedlund, Linden
Hillenbrand, Patrick Hunt, Matt Jacobs, Amandeep Khurana, Aaron Kimball, Hal Lee,
Justin Lintz, Todd Lipcon, Cameron Martin, Chad Metcalf, Meg McRoberts, Aaron T.
Myers, Kay Ousterhout, Greg Rahn, Henry Robinson, Mark Roddy, Jonathan Seidman,
Ed Sexton, Loren Siebert, Sunil Sitaula, Ben Spivey, Dan Spiewak, Omer Trajman,
Kathleen Ting, Erik-Jan van Baaren, Vinithra Varadharajan, Patrick Wendell, Tom
Wheeler, Ian Wrigley, Nezih Yigitbasi, and Philip Zeyliger. To those whom I may have
omitted from this list, please forgive me.

The folks at O’Reilly have been amazing, especially Courtney Nash, Mike Loukides,
Maria Stallone, Arlette Labat, and Meghan Blanchette.

Jaime Caban, Victor Nee, Travis Melo, Andrew Bayer, Liz Pennell, and Michael De-
metria provided additional administrative, technical, and contract support.

Finally, a special thank you to Kathy Sammer for her unwavering support, and for
teaching me to do exactly what others say you cannot.

Preface | xi

www.it-ebooks.info

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

Portions of this book have been reproduced or derived from software and documen-
tation available under the Apache Software License, version 2.

xii | Preface

www.it-ebooks.info

http://www.apache.org/licenses/LICENSE-2.0
http://www.it-ebooks.info/

CHAPTER 1

Introduction

Over the past few years, there has been a fundamental shift in data storage, manage-
ment, and processing. Companies are storing more data from more sources in more
formats than ever before. This isn’t just about being a “data packrat” but rather building
products, features, and intelligence predicated on knowing more about the world
(where the world can be users, searches, machine logs, or whatever is relevant to an
organization). Organizations are finding new ways to use data that was previously be-
lieved to be of little value, or far too expensive to retain, to better serve their constitu-
ents. Sourcing and storing data is one half of the equation. Processing that data to
produce information is fundamental to the daily operations of every modern business.

Data storage and processing isn’t a new problem, though. Fraud detection in commerce
and finance, anomaly detection in operational systems, demographic analysis in ad-
vertising, and many other applications have had to deal with these issues for decades.
What has happened is that the volume, velocity, and variety of this data has changed,
and in some cases, rather dramatically. This makes sense, as many algorithms benefit
from access to more data. Take, for instance, the problem of recommending products
to a visitor of an ecommerce website. You could simply show each visitor a rotating list
of products they could buy, hoping that one would appeal to them. It’s not exactly an
informed decision, but it’s a start. The question is what do you need to improve the
chance of showing the right person the right product? Maybe it makes sense to show
them what you think they like, based on what they’ve previously looked at. For some
products, it’s useful to know what they already own. Customers who already bought
a specific brand of laptop computer from you may be interested in compatible acces-
sories and upgrades.1 One of the most common techniques is to cluster users by similar
behavior (such as purchase patterns) and recommend products purchased by “similar”
users. No matter the solution, all of the algorithms behind these options require data

1. I once worked on a data-driven marketing project for a company that sold beauty products. Using
purchase transactions of all customers over a long period of time, the company was able to predict when
a customer would run out of a given product after purchasing it. As it turned out, simply offering them
the same thing about a week before they ran out resulted in a (very) noticeable lift in sales.

1

www.it-ebooks.info

http://www.it-ebooks.info/

and generally improve in quality with more of it. Knowing more about a problem space
generally leads to better decisions (or algorithm efficacy), which in turn leads to happier
users, more money, reduced fraud, healthier people, safer conditions, or whatever the
desired result might be.

Apache Hadoop is a platform that provides pragmatic, cost-effective, scalable infra-
structure for building many of the types of applications described earlier. Made up of
a distributed filesystem called the Hadoop Distributed Filesystem (HDFS) and a com-
putation layer that implements a processing paradigm called MapReduce, Hadoop is
an open source, batch data processing system for enormous amounts of data. We live
in a flawed world, and Hadoop is designed to survive in it by not only tolerating hard-
ware and software failures, but also treating them as first-class conditions that happen
regularly. Hadoop uses a cluster of plain old commodity servers with no specialized
hardware or network infrastructure to form a single, logical, storage and compute plat-
form, or cluster, that can be shared by multiple individuals or groups. Computation in
Hadoop MapReduce is performed in parallel, automatically, with a simple abstraction
for developers that obviates complex synchronization and network programming. Un-
like many other distributed data processing systems, Hadoop runs the user-provided
processing logic on the machine where the data lives rather than dragging the data
across the network; a huge win for performance.

For those interested in the history, Hadoop was modeled after two papers produced
by Google, one of the many companies to have these kinds of data-intensive processing
problems. The first, presented in 2003, describes a pragmatic, scalable, distributed
filesystem optimized for storing enormous datasets, called the Google Filesystem, or
GFS. In addition to simple storage, GFS was built to support large-scale, data-intensive,
distributed processing applications. The following year, another paper, titled "Map-
Reduce: Simplified Data Processing on Large Clusters," was presented, defining a pro-
gramming model and accompanying framework that provided automatic paralleliza-
tion, fault tolerance, and the scale to process hundreds of terabytes of data in a single
job over thousands of machines. When paired, these two systems could be used to build
large data processing clusters on relatively inexpensive, commodity machines. These
papers directly inspired the development of HDFS and Hadoop MapReduce, respec-
tively.

Interest and investment in Hadoop has led to an entire ecosystem of related software
both open source and commercial. Within the Apache Software Foundation alone,
projects that explicitly make use of, or integrate with, Hadoop are springing up regu-
larly. Some of these projects make authoring MapReduce jobs easier and more acces-
sible, while others focus on getting data in and out of HDFS, simplify operations, enable
deployment in cloud environments, and so on. Here is a sampling of the more popular
projects with which you should familiarize yourself:

Apache Hive
Hive creates a relational database−style abstraction that allows developers to write
a dialect of SQL, which in turn is executed as one or more MapReduce jobs on the

2 | Chapter 1: Introduction

www.it-ebooks.info

http://research.google.com/archive/gfs.html
http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/mapreduce.html
http://hive.apache.org
http://www.it-ebooks.info/

cluster. Developers, analysts, and existing third-party packages already know and
speak SQL (Hive’s dialect of SQL is called HiveQL and implements only a subset
of any of the common standards). Hive takes advantage of this and provides a quick
way to reduce the learning curve to adopting Hadoop and writing MapReduce jobs.
For this reason, Hive is by far one of the most popular Hadoop ecosystem projects.

Hive works by defining a table-like schema over an existing set of files in HDFS
and handling the gory details of extracting records from those files when a query
is run. The data on disk is never actually changed, just parsed at query time. HiveQL
statements are interpreted and an execution plan of prebuilt map and reduce
classes is assembled to perform the MapReduce equivalent of the SQL statement.

Apache Pig
Like Hive, Apache Pig was created to simplify the authoring of MapReduce jobs,
obviating the need to write Java code. Instead, users write data processing jobs in
a high-level scripting language from which Pig builds an execution plan and exe-
cutes a series of MapReduce jobs to do the heavy lifting. In cases where Pig doesn’t
support a necessary function, developers can extend its set of built-in operations
by writing user-defined functions in Java (Hive supports similar functionality as
well). If you know Perl, Python, Ruby, JavaScript, or even shell script, you can learn
Pig’s syntax in the morning and be running MapReduce jobs by lunchtime.

Apache Sqoop
Not only does Hadoop not want to replace your database, it wants to be friends
with it. Exchanging data with relational databases is one of the most popular in-
tegration points with Apache Hadoop. Sqoop, short for “SQL to Hadoop,” per-
forms bidirectional data transfer between Hadoop and almost any database with
a JDBC driver. Using MapReduce, Sqoop performs these operations in parallel
with no need to write code.

For even greater performance, Sqoop supports database-specific plug-ins that use
native features of the RDBMS rather than incurring the overhead of JDBC. Many
of these connectors are open source, while others are free or available from com-
mercial vendors at a cost. Today, Sqoop includes native connectors (called direct
support) for MySQL and PostgreSQL. Free connectors exist for Teradata, Netezza,
SQL Server, and Oracle (from Quest Software), and are available for download
from their respective company websites.

Apache Flume
Apache Flume is a streaming data collection and aggregation system designed to
transport massive volumes of data into systems such as Hadoop. It supports native
connectivity and support for writing directly to HDFS, and simplifies reliable,
streaming data delivery from a variety of sources including RPC services, log4j
appenders, syslog, and even the output from OS commands. Data can be routed,
load-balanced, replicated to multiple destinations, and aggregated from thousands
of hosts by a tier of agents.

Introduction | 3

www.it-ebooks.info

http://pig.apache.org
http://sqoop.apache.org
http://flume.apache.org
http://www.it-ebooks.info/

Apache Oozie
It’s not uncommon for large production clusters to run many coordinated Map-
Reduce jobs in a workfow. Apache Oozie is a workflow engine and scheduler built
specifically for large-scale job orchestration on a Hadoop cluster. Workflows can
be triggered by time or events such as data arriving in a directory, and job failure
handling logic can be implemented so that policies are adhered to. Oozie presents
a REST service for programmatic management of workflows and status retrieval.

Apache Whirr
Apache Whirr was developed to simplify the creation and deployment of ephem-
eral clusters in cloud environments such as Amazon’s AWS. Run as a command-
line tool either locally or within the cloud, Whirr can spin up instances, deploy
Hadoop, configure the software, and tear it down on demand. Under the hood,
Whirr uses the powerful jclouds library so that it is cloud provider−neutral. The
developers have put in the work to make Whirr support both Amazon EC2 and
Rackspace Cloud. In addition to Hadoop, Whirr understands how to provision
Apache Cassandra, Apache ZooKeeper, Apache HBase, ElasticSearch, Voldemort,
and Apache Hama.

Apache HBase
Apache HBase is a low-latency, distributed (nonrelational) database built on top
of HDFS. Modeled after Google’s Bigtable, HBase presents a flexible data model
with scale-out properties and a very simple API. Data in HBase is stored in a semi-
columnar format partitioned by rows into regions. It’s not uncommon for a single
table in HBase to be well into the hundreds of terabytes or in some cases petabytes.
Over the past few years, HBase has gained a massive following based on some very
public deployments such as Facebook’s Messages platform. Today, HBase is used
to serve huge amounts of data to real-time systems in major production deploy-
ments.

Apache ZooKeeper
A true workhorse, Apache ZooKeeper is a distributed, consensus-based coordina-
tion system used to support distributed applications. Distributed applications that
require leader election, locking, group membership, service location, and config-
uration services can use ZooKeeper rather than reimplement the complex coordi-
nation and error handling that comes with these functions. In fact, many projects
within the Hadoop ecosystem use ZooKeeper for exactly this purpose (most no-
tably, HBase).

Apache HCatalog
A relatively new entry, Apache HCatalog is a service that provides shared schema
and data access abstraction services to applications with the ecosystem. The
long-term goal of HCatalog is to enable interoperability between tools such as
Apache Hive and Pig so that they can share dataset metadata information.

The Hadoop ecosystem is exploding into the commercial world as well. Vendors such
as Oracle, SAS, MicroStrategy, Tableau, Informatica, Microsoft, Pentaho, Talend, HP,

4 | Chapter 1: Introduction

www.it-ebooks.info

http://incubator.apache.org/oozie/
http://whirr.apache.org
http://www.jclouds.org/
http://hbase.apache.org
http://research.google.com/archive/bigtable.html
http://www.facebook.com/note.php?note_id=454991608919
http://zookeeper.apache.org
http://incubator.apache.org/hcatalog/
http://www.it-ebooks.info/

Dell, and dozens of others have all developed integration or support for Hadoop within
one or more of their products. Hadoop is fast becoming (or, as an increasingly growing
group would believe, already has become) the de facto standard for truly large-scale
data processing in the data center.

If you’re reading this book, you may be a developer with some exposure to Hadoop
looking to learn more about managing the system in a production environment. Alter-
natively, it could be that you’re an application or system administrator tasked with
owning the current or planned production cluster. Those in the latter camp may be
rolling their eyes at the prospect of dealing with yet another system. That’s fair, and we
won’t spend a ton of time talking about writing applications, APIs, and other pesky
code problems. There are other fantastic books on those topics, especially Hadoop: The
Definitive Guide by Tom White (O’Reilly). Administrators do, however, play an abso-
lutely critical role in planning, installing, configuring, maintaining, and monitoring
Hadoop clusters. Hadoop is a comparatively low-level system, leaning heavily on the
host operating system for many features, and it works best when developers and ad-
ministrators collaborate regularly. What you do impacts how things work.

It’s an extremely exciting time to get into Apache Hadoop. The so-called big data space
is all the rage, sure, but more importantly, Hadoop is growing and changing at a stag-
gering rate. Each new version—and there have been a few big ones in the past year or
two—brings another truckload of features for both developers and administrators
alike. You could say that Hadoop is experiencing software puberty; thanks to its rapid
growth and adoption, it’s also a little awkward at times. You’ll find, throughout this
book, that there are significant changes between even minor versions. It’s a lot to keep
up with, admittedly, but don’t let it overwhelm you. Where necessary, the differences
are called out, and a section in Chapter 4 is devoted to walking you through the most
commonly encountered versions.

This book is intended to be a pragmatic guide to running Hadoop in production. Those
who have some familiarity with Hadoop may already know alternative methods for
installation or have differing thoughts on how to properly tune the number of map slots
based on CPU utilization.2 That’s expected and more than fine. The goal is not to
enumerate all possible scenarios, but rather to call out what works, as demonstrated
in critical deployments.

Chapters 2 and 3 provide the necessary background, describing what HDFS and Map-
Reduce are, why they exist, and at a high level, how they work. Chapter 4 walks you
through the process of planning for an Hadoop deployment including hardware selec-
tion, basic resource planning, operating system selection and configuration, Hadoop
distribution and version selection, and network concerns for Hadoop clusters. If you
are looking for the meat and potatoes, Chapter 5 is where it’s at, with configuration
and setup information, including a listing of the most critical properties, organized by

2. We also briefly cover the flux capacitor and discuss the burn rate of energon cubes during combat.

Introduction | 5

www.it-ebooks.info

http://shop.oreilly.com/product/0636920021773.do
http://shop.oreilly.com/product/0636920021773.do
http://www.it-ebooks.info/

topic. Those that have strong security requirements or want to understand identity,
access, and authorization within Hadoop will want to pay particular attention to
Chapter 6. Chapter 7 explains the nuts and bolts of sharing a single large cluster across
multiple groups and why this is beneficial while still adhering to service-level agree-
ments by managing and allocating resources accordingly. Once everything is up and
running, Chapter 8 acts as a run book for the most common operations and tasks.
Chapter 9 is the rainy day chapter, covering the theory and practice of troubleshooting
complex distributed systems such as Hadoop, including some real-world war stories.
In an attempt to minimize those rainy days, Chapter 10 is all about how to effectively
monitor your Hadoop cluster. Finally, Chapter 11 provides some basic tools and tech-
niques for backing up Hadoop and dealing with catastrophic failure.

6 | Chapter 1: Introduction

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

HDFS

Goals and Motivation
The first half of Apache Hadoop is a filesystem called the Hadoop Distributed Filesys-
tem or simply HDFS. HDFS was built to support high throughput, streaming reads and
writes of extremely large files. Traditional large storage area networks (SANs) and
network attached storage (NAS) offer centralized, low-latency access to either a block
device or a filesystem on the order of terabytes in size. These systems are fantastic as
the backing store for relational databases, content delivery systems, and similar types
of data storage needs because they can support full-featured POSIX semantics, scale to
meet the size requirements of these systems, and offer low-latency access to data.
Imagine for a second, though, hundreds or thousands of machines all waking up at the
same time and pulling hundreds of terabytes of data from a centralized storage system
at once. This is where traditional storage doesn’t necessarily scale.

By creating a system composed of independent machines, each with its own I/O sub-
system, disks, RAM, network interfaces, and CPUs, and relaxing (and sometimes re-
moving) some of the POSIX requirements, it is possible to build a system optimized,
in both performance and cost, for the specific type of workload we’re interested in.
There are a number of specific goals for HDFS:

• Store millions of large files, each greater than tens of gigabytes, and filesystem sizes
reaching tens of petabytes.

• Use a scale-out model based on inexpensive commodity servers with internal JBOD
(“Just a bunch of disks”) rather than RAID to achieve large-scale storage. Accom-
plish availability and high throughput through application-level replication of data.

• Optimize for large, streaming reads and writes rather than low-latency access to
many small files. Batch performance is more important than interactive response
times.

7

www.it-ebooks.info

http://www.it-ebooks.info/

• Gracefully deal with component failures of machines and disks.

• Support the functionality and scale requirements of MapReduce processing. See
Chapter 3 for details.

While it is true that HDFS can be used independently of MapReduce to store large
datasets, it truly shines when they’re used together. MapReduce, for instance, takes
advantage of how the data in HDFS is split on ingestion into blocks and pushes com-
putation to the machine where blocks can be read locally.

Design
HDFS, in many ways, follows traditional filesystem design. Files are stored as opaque
blocks and metadata exists that keeps track of the filename to block mapping, directory
tree structure, permissions, and so forth. This is similar to common Linux filesystems
such as ext3. So what makes HDFS different?

Traditional filesystems are implemented as kernel modules (in Linux, at least) and
together with userland tools, can be mounted and made available to end users. HDFS
is what’s called a userspace filesystem. This is a fancy way of saying that the filesystem
code runs outside the kernel as OS processes and by extension, is not registered with
or exposed via the Linux VFS layer. While this is much simpler, more flexible, and
arguably safer to implement, it means that you don't mount HDFS as you would ext3,
for instance, and that it requires applications to be explicitly built for it.

In addition to being a userspace filesystem, HDFS is a distributed filesystem. Dis-
tributed filesystems are used to overcome the limits of what an individual disk or ma-
chine is capable of supporting. Each machine in a cluster stores a subset of the data
that makes up the complete filesystem with the idea being that, as we need to store
more block data, we simply add more machines, each with multiple disks. Filesystem
metadata is stored on a centralized server, acting as a directory of block data and pro-
viding a global picture of the filesystem’s state.

Another major difference between HDFS and other filesystems is its block size. It is
common that general purpose filesystems use a 4 KB or 8 KB block size for data. Ha-
doop, on the other hand, uses the significantly larger block size of 64 MB by default.
In fact, cluster administrators usually raise this to 128 MB, 256 MB, or even as high as
1 GB. Increasing the block size means data will be written in larger contiguous chunks
on disk, which in turn means data can be written and read in larger sequential opera-
tions. This minimizes drive seek operations—one of the slowest operations a mechan-
ical disk can perform—and results in better performance when doing large streaming
I/O operations.

Rather than rely on specialized storage subsystem data protection, HDFS replicates
each block to multiple machines in the cluster. By default, each block in a file is repli-
cated three times. Because files in HDFS are write once, once a replica is written, it is
not possible for it to change. This obviates the need for complex reasoning about the

8 | Chapter 2: HDFS

www.it-ebooks.info

http://www.it-ebooks.info/

consistency between replicas and as a result, applications can read any of the available
replicas when accessing a file. Having multiple replicas means multiple machine failures
are easily tolerated, but there are also more opportunities to read data from a machine
closest to an application on the network. HDFS actively tracks and manages the number
of available replicas of a block as well. Should the number of copies of a block drop
below the configured replication factor, the filesystem automatically makes a new copy
from one of the remaining replicas. Throughout this book, we’ll frequently use the term
replica to mean a copy of an HDFS block.

Applications, of course, don’t want to worry about blocks, metadata, disks, sectors,
and other low-level details. Instead, developers want to perform I/O operations using
higher level abstractions such as files and streams. HDFS presents the filesystem to
developers as a high-level, POSIX-like API with familiar operations and concepts.

Daemons
There are three daemons that make up a standard HDFS cluster, each of which serves
a distinct role, shown in Table 2-1.

Table 2-1. HDFS daemons

Daemon # per cluster Purpose

Namenode 1 Stores filesystem metadata, stores file to block map, and pro-
vides a global picture of the filesystem

Secondary namenode 1 Performs internal namenode transaction log checkpointing

Datanode Many Stores block data (file contents)

Blocks are nothing more than chunks of a file, binary blobs of data. In HDFS, the
daemon responsible for storing and retrieving block data is called the datanode (DN).
The datanode has direct local access to one or more disks—commonly called data disks
—in a server on which it’s permitted to store block data. In production systems, these
disks are usually reserved exclusively for Hadoop. Storage can be added to a cluster by
adding more datanodes with additional disk capacity, or even adding disks to existing
datanodes.

One of the most striking aspects of HDFS is that it is designed in such a way that it
doesn’t require RAID storage for its block data. This keeps with the commodity hard-
ware design goal and reduces cost as clusters grow in size. Rather than rely on a RAID
controller for data safety, block data is simply written to multiple machines. This fulfills
the safety concern at the cost of raw storage consumed; however, there’s a performance
aspect to this as well. Having multiple copies of each block on separate machines means
that not only are we protected against data loss if a machine disappears, but during
processing, any copy of this data can be used. By having more than one option, the
scheduler that decides where to perform processing has a better chance of being able

Daemons | 9

www.it-ebooks.info

http://www.it-ebooks.info/

to find a machine with available compute resources and a copy of the data. This is
covered in greater detail in Chapter 3.

The lack of RAID can be controversial. In fact, many believe RAID simply makes disks
faster, akin to a magic go-fast turbo button. This, however, is not always the case. A
very large number of independently spinning disks performing huge sequential I/O
operations with independent I/O queues can actually outperform RAID in the specific
use case of Hadoop workloads. Typically, datanodes have a large number of independent
disks, each of which stores full blocks. For an expanded discussion of this and related
topics, see “Blades, SANs, and Virtualization” on page 52.

While datanodes are responsible for storing block data, the namenode (NN) is the
daemon that stores the filesystem metadata and maintains a complete picture of the
filesystem. Clients connect to the namenode to perform filesystem operations; al-
though, as we’ll see later, block data is streamed to and from datanodes directly, so
bandwidth is not limited by a single node. Datanodes regularly report their status to
the namenode in a heartbeat. This means that, at any given time, the namenode has a
complete view of all datanodes in the cluster, their current health, and what blocks they
have available. See Figure 2-1 for an example of HDFS architecture.

Figure 2-1. HDFS architecture overview

10 | Chapter 2: HDFS

www.it-ebooks.info

http://www.it-ebooks.info/

When a datanode initially starts up, as well as every hour thereafter, it sends what’s
called a block report to the namenode. The block report is simply a list of all blocks the
datanode currently has on its disks and allows the namenode to keep track of any
changes. This is also necessary because, while the file to block mapping on the name-
node is stored on disk, the locations of the blocks are not written to disk. This may
seem counterintuitive at first, but it means a change in IP address or hostname of any
of the datanodes does not impact the underlying storage of the filesystem metadata.
Another nice side effect of this is that, should a datanode experience failure of a moth-
erboard, administrators can simply remove its hard drives, place them into a new chas-
sis, and start up the new machine. As far as the namenode is concerned, the blocks
have simply moved to a new datanode. The downside is that, when initially starting a
cluster (or restarting it, for that matter), the namenode must wait to receive block re-
ports from all datanodes to know all blocks are present.

The namenode filesystem metadata is served entirely from RAM for fast lookup and
retrieval, and thus places a cap on how much metadata the namenode can handle. A
rough estimate is that the metadata for 1 million blocks occupies roughly 1 GB of heap
(more on this in “Hardware Selection” on page 45). We’ll see later how you can
overcome this limitation, even if it is encountered only at a very high scale (thousands
of nodes).

Finally, the third HDFS process is called the secondary namenode and performs some
internal housekeeping for the namenode. Despite its name, the secondary namenode
is not a backup for the namenode and performs a completely different function.

The secondary namenode may have the worst name for a process in the
history of computing. It has tricked many new to Hadoop into believing
that, should the evil robot apocalypse occur, their cluster will continue
to function when their namenode becomes sentient and walks out of
the data center. Sadly, this isn’t true. We’ll explore the true function of
the secondary namenode in just a bit, but for now, remember what it is
not; that’s just as important as what it is.

Reading and Writing Data
Clients can read and write to HDFS using various tools and APIs (see “Access and
Integration” on page 20), but all of them follow the same process. The client always,
at some level, uses a Hadoop library that is aware of HDFS and its semantics. This
library encapsulates most of the gory details related to communicating with the name-
node and datanodes when necessary, as well as dealing with the numerous failure cases
that can occur when working with a distributed filesystem.

Reading and Writing Data | 11

www.it-ebooks.info

http://www.it-ebooks.info/

The Read Path
First, let’s walk through the logic of performing an HDFS read operation. For this, we’ll
assume there’s a file /user/esammer/foo.txt already in HDFS. In addition to using Ha-
doop’s client library—usually a Java JAR file—each client must also have a copy of the
cluster configuration data that specifies the location of the namenode (see Chapter 5).
As shown in Figure 2-2, the client begins by contacting the namenode, indicating which
file it would like to read. The client identity is first validated—either by trusting the
client and allowing it to specify a username or by using a strong authentication mech-
anism such as Kerberos (see Chapter 6)—and then checked against the owner and
permissions of the file. If the file exists and the user has access to it, the namenode
responds to the client with the first block ID and the list of datanodes on which a copy
of the block can be found, sorted by their distance to the client. Distance to the client
is measured according to Hadoop’s rack topology—configuration data that indicates
which hosts are located in which racks. (More on rack topology configuration is avail-
able in “Rack Topology” on page 130.)

If the namenode is unavailable for some reason—because of a problem
with either the namenode itself or the network, for example—clients
will receive timeouts or exceptions (as appropriate) and will be unable
to proceed.

With the block IDs and datanode hostnames, the client can now contact the most
appropriate datanode directly and read the block data it needs. This process repeats
until all blocks in the file have been read or the client closes the file stream.

Figure 2-2. The HDFS read path

12 | Chapter 2: HDFS

www.it-ebooks.info

http://www.it-ebooks.info/

It is also possible that while reading from a datanode, the process or host on which it
runs, dies. Rather than give up, the library will automatically attempt to read another
replica of the data from another datanode. If all replicas are unavailable, the read op-
eration fails and the client receives an exception. Another corner case that can occur is
that the information returned by the namenode about block locations can be outdated
by the time the client attempts to contact a datanode, in which case either a retry will
occur if there are other replicas or the read will fail. While rare, these kinds of corner
cases make troubleshooting a large distributed system such as Hadoop so complex. See
Chapter 9 for a tour of what can go wrong and how to diagnose the problem.

The Write Path
Writing files to HDFS is a bit more complicated than performing reads. We’ll consider
the simplest case where a client is creating a new file. Remember that clients need not
actually implement this logic; this is simply an overview of how data is written to the
cluster by the underlying Hadoop library. Application developers use (mostly) familiar
APIs to open files, write to a stream, and close them similarly to how they would with
traditional local files.

Initially, a client makes a request to open a named file for write using the Hadoop
FileSystem APIs. A request is sent to the namenode to create the file metadata if the
user has the necessary permissions to do so. The metadata entry for the new file is made;
however, it initially has no associated blocks. A response to the client indicates the open
request was successful and that it may now begin writing data. At the API level, a
standard Java stream object is returned, although the implementation is HDFS-specific.
As the client writes data to the stream it is split into packets (not to be confused with
TCP packets or HDFS blocks), which are queued in memory. A separate thread in the
client consumes packets from this queue and, as necessary, contacts the namenode
requesting a set of datanodes to which replicas of the next block should be written. The
client then makes a direct connection to the first datanode in the list, which makes a
connection to the second, which connects to the third. This forms the replication pipe-
line to be used for this block of data, as shown in Figure 2-3. Data packets are then
streamed to the first datanode, which writes the data to disk, and to the next datanode
in the pipeline, which writes to its disk, and so on. Each datanode in the replication
pipeline acknowledges each packet as it’s successfully written. The client application
maintains a list of packets for which acknowledgments have not yet been received and
when it receives a response, it knows the data has been written to all nodes in the
pipeline. This process of writing packets to the pipeline continues until the block size
is reached, at which point the client goes back to the namenode for the next set of
datanodes to write to. Ultimately, the client indicates it’s finished sending data by clos-
ing the stream, which flushes any remaining packets out to disk and updates the name-
node to indicate the file is now complete.

Of course, things are not always this simple, and failures can occur. The most common
type of failure is that a datanode in the replication pipeline fails to write data for one

Reading and Writing Data | 13

www.it-ebooks.info

http://www.it-ebooks.info/

reason or another—a disk dies or a datanode fails completely, for instance. When this
happens, the pipeline is immediately closed and all packets that had been sent since
the last acknowledgment are pushed back into the queue to be written so that any
datanodes past the failed node in the pipeline will receive the data. The current block
is given a new ID on the remaining healthy datanodes. This is done so that, should the
failed datanode return, the abandoned block will appear to not belong to any file and
be discarded automatically. A new replication pipeline containing the remaining da-
tanodes is opened and the write resumes. At this point, things are mostly back to normal
and the write operation continues until the file is closed. The namenode will notice that
one of the blocks in the file is under-replicated and will arrange for a new replica to be
created asynchronously. A client can recover from multiple failed datanodes provided
at least a minimum number of replicas are written (by default, this is one).

Managing Filesystem Metadata
The namenode stores its filesystem metadata on local filesystem disks in a few different
files, the two most important of which are fsimage and edits. Just like a database would,
fsimage contains a complete snapshot of the filesystem metadata whereas edits contains

Figure 2-3. The HDFS write path

14 | Chapter 2: HDFS

www.it-ebooks.info

http://www.it-ebooks.info/

only incremental modifications made to the metadata. A common practice for high-
throughput data stores, use of a write ahead log (WAL) such as the edits file reduces I/
O operations to sequential, append-only operations (in the context of the namenode,
since it serves directly from RAM), which avoids costly seek operations and yields better
overall performance. Upon namenode startup, the fsimage file is loaded into RAM and
any changes in the edits file are replayed, bringing the in-memory view of the filesystem
up to date.

In more recent versions of Hadoop (specifically, Apache Hadoop 2.0 and CDH4; more
on the different versions of Hadoop in “Picking a Distribution and Version of Ha-
doop” on page 41), the underlying metadata storage was updated to be more resilient
to corruption and to support namenode high availability. Conceptually, metadata stor-
age is similar, although transactions are no longer stored in a single edits file. Instead,
the namenode periodically rolls the edits file (closes one file and opens a new file),
numbering them by transaction ID. It’s also possible for the namenode to now retain
old copies of both fsimage and edits to better support the ability to roll back in time.
Most of these changes won’t impact you, although it helps to understand the purpose
of the files on disk. That being said, you should never make direct changes to these files
unless you really know what you are doing. The rest of this book will simply refer to
these files using their base names, fsimage and edits, to refer generally to their function.

Recall from earlier that the namenode writes changes only to its write ahead log,
edits. Over time, the edits file grows and grows and as with any log-based system such
as this, would take a long time to replay in the event of server failure. Similar to a
relational database, the edits file needs to be periodically applied to the fsimage file. The
problem is that the namenode may not have the available resources—CPU or RAM—
to do this while continuing to provide service to the cluster. This is where the secondary
namenode comes in.

The exact interaction that occurs between the namenode and the secondary namenode
(shown in Figure 2-4) is as follows:1

1. The secondary namenode instructs the namenode to roll its edits file and begin
writing to edits.new.

2. The secondary namenode copies the namenode’s fsimage and edits files to its local
checkpoint directory.

3. The secondary namenode loads fsimage, replays edits on top of it, and writes a new,
compacted fsimage file to disk.

4. The secondary namenode sends the new fsimage file to the namenode, which
adopts it.

5. The namenode renames edits.new to edits.

1. This process is slightly different for Apache Hadoop 2.0 and CDH4, but it is conceptually the equivalent.

Managing Filesystem Metadata | 15

www.it-ebooks.info

http://www.it-ebooks.info/

This process occurs every hour (by default) or whenever the namenode’s edits file rea-
ches 64 MB (also the default). There isn’t usually a good reason to modify this, although
we’ll explore that later. Newer versions of Hadoop use a defined number of transactions
rather than file size to determine when to perform a checkpoint.

Namenode High Availability
As administrators responsible for the health and service of large-scale systems, the no-
tion of a single point of failure should make us a bit uneasy (or worse). Unfortunately,
for a long time the HDFS namenode was exactly that: a single point of failure. Recently,
the Hadoop community as a whole has invested heavily in making the namenode highly
available, opening Hadoop to additional mission-critical deployments.

Namenode high availability (or HA) is deployed as an active/passive pair of namenodes.
The edits write ahead log needs to be available to both namenodes, and therefore is
stored on a shared storage device. Currently, an NFS filer is required as the shared
storage, although there are plans to remove this dependency.2 As the active namenode
writes to the edits log, the standby namenode is constantly replaying transactions to
ensure it is up to date and ready to take over in the case of failure. Datanodes are also
aware of both namenodes in an HA configuration and send block reports to both
servers.

A high-availability pair of namenodes can be configured for manual or automatic fail-
over. In the default manual failover mode, a command must be sent to effect a state
transition from one namenode to the other. When configured for automatic failover,
each namenode runs an additional process called a failover controller that monitors the
health of the process and coordinates state transitions. Just as in other HA systems,
there are two primary types of failover: graceful failover, initiated by an administrator,
and nongraceful failover, which is the result of a detected fault in the active process. In
either case, it’s impossible to truly know if a namenode has relinquished active status

Figure 2-4. Metadata checkpoint process

2. See Apache JIRA HDFS-3077.

16 | Chapter 2: HDFS

www.it-ebooks.info

https://issues.apache.org/jira/browse/HDFS-3077
http://www.it-ebooks.info/

or if it’s simply inaccessible from the standby. If both processes were allowed to con-
tinue running, they could both write to the shared state and corrupt the filesystem
metadata. This is commonly called a split brain scenario. For this reason, the system
can use a series of increasingly drastic techniques to ensure the failed node (which could
still think it’s active) is actually stopped. This can start with something as simple as
asking it to stop via RPC, but can end with the mother of all fencing techniques:
STONITH, or “shoot the other node in the head.” STONITH can be implemented by
issuing a reboot via IPMI, or even by programmatically cutting power to a machine for
a short period of time if data center power distribution units (PDUs) support such
functionality. Most administrators who want high availability will also want to con-
figure automatic failover as well. See Figure 2-5 for an example of automatic failover.

When running with high availability, the standby namenode takes over the role of the
secondary namenode, described earlier. In other words, there is no separate secondary
namenode process in an HA cluster, only a pair of namenode processes. Those that
already run Hadoop clusters that have a dedicated machine on which they run the
secondary namenode process can repurpose that machine to be a second namenode in
most cases. The various configuration options for high availability are covered, in detail,
in “Namenode High Availability” on page 100.

Figure 2-5. A highly available namenode pair with automatic failover

Namenode High Availability | 17

www.it-ebooks.info

http://www.intel.com/design/servers/ipmi/
http://www.it-ebooks.info/

At the time of this writing, namenode high availability (sometimes abbreviated NN
HA) is available in Apache Hadoop 2.0.0 and CDH4.

Why Not Use an XYZ HA Package?
Users familiar with packages such as the Linux-HA project sometimes ask why they
can't simply write some scripts and manage the HDFS namenode HA issue that way.
These tools, after all, support health checks, in and out of band communication, and
fencing plug-ins already. Unfortunately, HA is a tougher nut to crack than simply killing
a process and starting a new one elsewhere.

The real challenge with implementing a highly available namenode stems from the fact
that datanode block reports are not written to disk. In other words, even if one were
to set up a namenode with one of these systems, write the proper health checks, detect
a failure, initiate a state transition (failover), and activate the standby, it still wouldn’t
know where to find any of the blocks and wouldn’t be able to service HDFS clients.
Additionally, the datanodes—probably now viewing the namenode via a virtual IP
(VIP)—would not realize a transition had occurred and wouldn’t know to send a new
block report to bring the new namenode up to speed on the state of the cluster. As we
saw earlier, receiving and processing block reports from hundreds or thousands of
machines is actually the part of cluster startup that takes time; on the order of tens of
minutes or more. This type of interruption is still far outside of the acceptable service-
level agreement for many mission-critical systems.

Systems such as Linux-HA work well for stateless services such as static content serving,
but for a stateful system such as the namenode, they’re insufficient.

Namenode Federation
Large-scale users of Hadoop have had another obstacle with which to contend: the
limit of how much metadata the namenode can store in memory. In order to scale the
namenode beyond the amount of physical memory that could be stuffed into a single
server, there needed to be a way to move from a scale-up to a scale-out approach. Just
like we’ve seen with block storage in HDFS, it’s possible to spread the filesystem met-
adata over multiple machines. This technique is called namespace federation and refers
to assembling one logical namespace from a number of autonomous systems. An ex-
ample of a federated namespace is the Linux filesystem: many devices can be mounted
at various points to form a single namespace that clients can address without concern
for which underlying device actually contains the data.

Namenode federation (Figure 2-6) works around the memory limitation of the name-
node by allowing the filesystem namespace to be broken up into slices and spread across
multiple namenodes. Just as it sounds, this is really just like running a number of sep-
arate namenodes, each of which is responsible for a different part of the directory
structure. The one major way in which namenode federation is different from running
several discreet clusters is that each datanode stores blocks for multiple namenodes.

18 | Chapter 2: HDFS

www.it-ebooks.info

http://www.linux-ha.org/wiki/Main_Page
http://www.it-ebooks.info/

More precisely, each datanode has a block pool for each namespace. While blocks from
different pools are stored on the same disks (there is no physical separation), they are
logically exclusive. Each datanode sends heartbeats and block reports to each name-
node.

Clients often do not want to have to worry about multiple namenodes, so a special
client API implementation called ViewFS can be used that maps slices of the filesystem
to the proper namenode. This is, conceptually, almost identical to the Linux /etc/
fstab file, except that rather than mapping paths to physical devices, ViewFS maps paths
to HDFS namenodes. For instance, we can configure ViewFS to look at namenode1 for
path /logs and namenode2 for path /hbase. Federation also allows us to use namespace
partitioning to control the availability and fault tolerance of different slices of the file-
system. In our previous example, /hbase could be on a namenode that requires ex-
tremely high uptime while maybe /logs is used only by batch operations in MapReduce.

Figure 2-6. Namenode federation overview

Namenode Federation | 19

www.it-ebooks.info

http://www.it-ebooks.info/

Lastly, it’s important to note that HA and federation are orthogonal features. That is,
it is possible to enable them independently of each other, as they speak to two different
problems. This means a namespace can be partitioned and some of those partitions (or
all) may be served by an HA pair of namenodes.

Access and Integration
The sole native method of access to HDFS is its Java API. All other access methods are
built on top of this API and by definition, can expose only as much functionality as it
permits. In an effort to ease adoption and development of applications, the HDFS API
is simple and familiar to developers, piggybacking on concepts such as Java’s I/O
streams. The API does differ where necessary in order to provide the features and guar-
antees it advertises, but most of these are obvious or documented.

In order to access HDFS, clients—applications that are written against the API—must
have a copy of configuration data that tells them where the namenode is running. This
is analogous to an Oracle client application requiring the tnsnames.ora file. Each ap-
plication must also have access to the Hadoop library JAR file. Again, this is the equiv-
alent of a database client application’s dependence on a JDBC driver JAR. Clients can
be on the same physical machines as any of the Hadoop daemons, or they can be
separate from the cluster proper. MapReduce tasks and HBase Region Servers, for ex-
ample, access HDFS as any other normal client would. They just happen to be running
on the same physical machines where HDFS stores its block data.

It’s important to realize that, as a consequence of the direct client to datanode com-
munication, network access between clients and all cluster nodes’ relevant ports must
be unfettered. This has implications on network design, security, and bandwidth that
are covered in “Network Design” on page 66.

Command-Line Tools
Hadoop comes with a number of command-line tools that enable basic filesystem op-
erations. Like all Hadoop tools, HDFS commands are subcommands of the hadoop
command-line utility. Running hadoop fs will display basic usage information, as
shown in Example 2-1.

Example 2-1. hadoop fs help information

[esammer@hadoop01 ~]$ hadoop fs
Usage: java FsShell
 [-ls <path>]
 [-lsr <path>]
 [-df [<path>]]
 [-du <path>]
 [-dus <path>]
 [-count[-q] <path>]
 [-mv <src> <dst>]

20 | Chapter 2: HDFS

www.it-ebooks.info

http://www.it-ebooks.info/

 [-cp <src> <dst>]
 [-rm [-skipTrash] <path>]
 [-rmr [-skipTrash] <path>]
 [-expunge]
 [-put <localsrc> ... <dst>]
 [-copyFromLocal <localsrc> ... <dst>]
 [-moveFromLocal <localsrc> ... <dst>]
 [-get [-ignoreCrc] [-crc] <src> <localdst>]
 [-getmerge <src> <localdst> [addnl]]
 [-cat <src>]
 [-text <src>]
 [-copyToLocal [-ignoreCrc] [-crc] <src> <localdst>]
 [-moveToLocal [-crc] <src> <localdst>]
 [-mkdir <path>]
 [-setrep [-R] [-w] <rep> <path/file>]
 [-touchz <path>]
 [-test -[ezd] <path>]
 [-stat [format] <path>]
 [-tail [-f] <file>]
 [-chmod [-R] <MODE[,MODE]... | OCTALMODE> PATH...]
 [-chown [-R] [OWNER][:[GROUP]] PATH...]
 [-chgrp [-R] GROUP PATH...]
 [-help [cmd]]

Most of these commands will be immediately obvious to an administrator with basic
shell experience. The major difference is that, because HDFS is a user space filesystem,
there’s no concept of a current working directory. All paths are either absolute (rec-
ommended) or relative to the user’s home directory within HDFS.3 An absolute path
can be of the form /logs/2012/01/25/, or it can include the full URL to specify the loca-
tion of the namenode, such as hdfs://mynamenode.mycompany.com:8020/logs/2012/01/
25/. If the full URL syntax is not used, the value is taken from the fs.default.name
parameter in the core-site.xml configuration file (see Example 2-2).

Example 2-2. Listing files and directories in HDFS

[esammer@hadoop01 ~]$ hadoop fs -ls /user/esammer
Found 4 items
drwx------ - esammer supergroup 0 2012-01-11 15:06 /user/esammer/.staging
-rw-r--r-- 3 esammer supergroup 27888890 2012-01-10 13:41 /user/esammer/data.txt
drwxr-xr-x - esammer supergroup 0 2012-01-11 13:08 /user/esammer/teragen
drwxr-xr-x - esammer supergroup 0 2012-01-11 15:06 /user/esammer/terasort

To prove to ourselves that the HDFS namespace is entirely separate from the host OS,
we can attempt to list the same path using the standard ls command (see Example 2-3).

Example 2-3. Attempting to list an HDFS path on the OS

esammer@hadoop01 ~]$ ls /user/esammer
ls: /user/esammer: No such file or directory

3. User home directories in HDFS are located in /user/<username> by default.

Access and Integration | 21

www.it-ebooks.info

http://www.it-ebooks.info/

In many ways, HDFS is more like a remote filesystem than a local OS filesystem. The
act of copying files to or from HDFS is more like SCP or FTP than working with an
NFS mounted filesystem, for example. Files are uploaded using either -put or the
synonym -copyFromLocal and are downloaded with -get or -copyToLocal. As a conve-
nience, the -moveFromLocal and -moveToLocal commands will copy a file from or to
HDFS, respectively, and then remove the source file (see Example 2-4).

Example 2-4. Copying files to and from HDFS

[esammer@hadoop01 ~]$ hadoop fs -ls /user/esammer/
Found 2 items
drwx------ - esammer supergroup 0 2012-01-11 15:06 /user/esammer/.staging
-rw-r--r-- 3 esammer supergroup 27888890 2012-01-10 13:41 /user/esammer/data.txt
[esammer@hadoop01 ~]$ hadoop fs -put /etc/passwd /user/esammer/
[esammer@hadoop01 ~]$ hadoop fs -ls /user/esammer/
Found 3 items
drwx------ - esammer supergroup 0 2012-01-11 15:06 /user/esammer/.staging
-rw-r--r-- 3 esammer supergroup 27888890 2012-01-10 13:41 /user/esammer/data.txt
-rw-r--r-- 3 esammer supergroup 2216 2012-01-25 21:07 /user/esammer/passwd
esammer@hadoop01 ~]$ ls -al passwd
ls: passwd: No such file or directory
[esammer@hadoop01 ~]$ hadoop fs -get /user/esammer/passwd ./
[esammer@hadoop01 ~]$ ls -al passwd
-rw-rw-r--+ 1 esammer esammer 2216 Jan 25 21:17 passwd
[esammer@hadoop01 ~]$ hadoop fs -rm /user/esammer/passwd
Deleted hdfs://hadoop01.sf.cloudera.com/user/esammer/passwd

Also unique to HDFS is the ability to set the replication factor of a file. This can be
done by using the -setrep command, which takes a replication factor and an optional
flag (-R) to indicate it should operate recursively (see Example 2-5).

Example 2-5. Changing the replication factor on files in HDFS

[esammer@hadoop01 ~]$ hadoop fs -setrep 5 -R /user/esammer/tmp/
Replication 5 set: hdfs://hadoop01.sf.cloudera.com/user/esammer/tmp/a
Replication 5 set: hdfs://hadoop01.sf.cloudera.com/user/esammer/tmp/b
[esammer@hadoop01 ~]$ hadoop fsck /user/esammer/tmp -files -blocks -locations
FSCK started by esammer from /10.1.1.160 for path /user/esammer/tmp at
 Wed Jan 25 21:57:39 PST 2012
/user/esammer/tmp <dir>
/user/esammer/tmp/a 27888890 bytes, 1 block(s): OK
0. blk_2989979708465864046_2985473 len=27888890 repl=5 [10.1.1.162:50010,
 10.1.1.161:50010, 10.1.1.163:50010, 10.1.1.165:50010, 10.1.1.164:50010]

/user/esammer/tmp/b 27888890 bytes, 1 block(s): OK
0. blk_-771344189932970151_2985474 len=27888890 repl=5 [10.1.1.164:50010,
 10.1.1.163:50010, 10.1.1.161:50010, 10.1.1.162:50010, 10.1.1.165:50010]

In Example 2-5, we’ve changed the replication factor of files a and b in the tmp directory
to 5. Next, the fsck, which is covered in “Checking Filesystem Integrity with
fsck” on page 198, is used to inspect file health but has the nice side effect of displaying
block location information for each file. Here, the five replicas of each block are spread

22 | Chapter 2: HDFS

www.it-ebooks.info

http://www.it-ebooks.info/

over five different datanodes in the cluster, as expected. You may notice that only files
have a block list. Directories in HDFS are purely metadata entries and have no block
data.

FUSE
Filesystem In Userspace, or FUSE, is a system that allows developers to implement
mountable filesystems in user space. That is, development of a kernel module is not
required. This is not only simpler to work with because developers can use standard
libraries in a familiar environment, but it is also safer because developer bugs can’t
necessarily cause kernel panics.

Both Apache Hadoop and CDH come with support for FUSE HDFS which, as you may
have guessed, allows you to mount the Hadoop distributed filesystem as you would
any other device. This allows legacy applications and systems to continue to read and
write files to a regular directory on a Linux server that is backed by HDFS. While this
is useful, it’s not a panacea. All of the properties of HDFS are still present: no in-place
modification of files, comparatively high latency, poor random access performance,
optimization for large streaming operations, and huge scale. To be absolutely clear,
FUSE does not make HDFS a POSIX-compliant filesystem. It is only a compatibility
layer that can expose HDFS to applications that perform only basic file operations.

REST Support
Over the past few years, Representational State Transfer (REST) has become an in-
creasingly popular way to interact with services in a language-agnostic way. Hadoop’s
native APIs are all Java-based, which presents a problem for non-Java clients. Appli-
cations have the option of shelling out and using the hadoop fs command, but that’s
inefficient and error-prone (not to mention aesthetically displeasing). Starting with
Apache Hadoop 1.0.0 and CDH4, WebHDFS, a RESTful API to HDFS, is now a stan-
dard part of the software. WebHDFS makes use of the already embedded web server
in each Hadoop HDFS daemon to run a set of REST APIs that mimic that of the Java
FileSystem API, including read and write methods. Full authentication, including Ker-
beros SPNEGO, is supported by WebHDFS. See Example 2-6 for a sample invocation
of the WebHDFS equivalent of the hadoop fs -ls /hbase command.

Example 2-6. Using a WebHDFS REST call to list a directory

[esammer@hadoop01 ~]$ curl http://hadoop01:50070/webhdfs/v1/hbase/?op=liststatus
{"FileStatuses":{"FileStatus":[
{"accessTime":0,"blockSize":0,"group":"hbase","length":0,"modificationTime":
 1342560095961,"owner":"hbase","pathSuffix":"-ROOT-","permission":"755",
 "replication":0,"type":"DIRECTORY"},
{"accessTime":0,"blockSize":0,"group":"hbase","length":0,"modificationTime":
 1342560094415,"owner":"hbase","pathSuffix":".META.","permission":"755",
 "replication":0,"type":"DIRECTORY"},
{"accessTime":0,"blockSize":0,"group":"hbase","length":0,"modificationTime":

Access and Integration | 23

www.it-ebooks.info

http://fuse.sourceforge.net/
http://www.it-ebooks.info/

 1342561404890,"owner":"hbase","pathSuffix":".logs","permission":"755",
 "replication":0,"type":"DIRECTORY"},
{"accessTime":0,"blockSize":0,"group":"hbase","length":0,"modificationTime":
 1342561406399,"owner":"hbase","pathSuffix":".oldlogs","permission":"755",
 "replication":0,"type":"DIRECTORY"},
{"accessTime":1342560093866,"blockSize":67108864,"group":"hbase","length":38,
 "modificationTime":1342560093866,"owner":"hbase","pathSuffix":"hbase.id",
 "permission":"644","replication":3,"type":"FILE"},
{"accessTime":1342560093684,"blockSize":67108864,"group":"hbase","length":3,
 "modificationTime":1342560093684,"owner":"hbase","pathSuffix":"hbase.version",
 "permission":"644","replication":3,"type":"FILE"}
]}}

Around the same time, a standalone RESTful HDFS proxy service was created, called
HttpFS. While at first glance, both WebHDFS and HttpFS solve the same problem—
in fact, HttpFS is 100% API-compatible with WebHDFS—they address two separate
architectual problems. By using the embedded web server in each daemon, WebHDFS
clients must be able to communicate with each node of the cluster, just like native Java
clients. HttpFS primarily exists to solve this problem and instead acts as a gateway
service that can span network segments. Clients require only connectivity to the HttpFS
daemon, which in turn performs all communication with the HDFS cluster using the
standard Java APIs. The upside to HttpFS is that it minimizes the footprint required to
communicate with the cluster, but at the cost of total scale and capacity because all
data between clients and HDFS must now travel through a single node. Of course, it
is perfectly fine to run multiple HttpFS proxies to overcome this problem. Further,
because both WebHDFS and HttpFS are fully API-compatible, developers writing cli-
ent applications need to concern themselves with these details. The decision can be one
based exclusively on the required data throughput and network design and security
requirements.

24 | Chapter 2: HDFS

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

MapReduce

MapReduce refers to two distinct things: the programming model (covered here) and
the specific implementation of the framework (covered later in “Introducing Hadoop
MapReduce” on page 33). Designed to simplify the development of large-scale, dis-
tributed, fault-tolerant data processing applications, MapReduce is foremost a way of
writing applications. In MapReduce, developers write jobs that consist primarily of a
map function and a reduce function, and the framework handles the gory details of
parallelizing the work, scheduling parts of the job on worker machines, monitoring for
and recovering from failures, and so forth. Developers are shielded from having to
implement complex and repetitious code and instead, focus on algorithms and business
logic. User-provided code is invoked by the framework rather than the other way
around. This is much like Java application servers that invoke servlets upon receiving
an HTTP request; the container is responsible for setup and teardown as well as pro-
viding a runtime environment for user-supplied code. Similarly, as servlet authors need
not implement the low-level details of socket I/O, event handling loops, and complex
thread coordination, MapReduce developers program to a well-defined, simple inter-
face and the “container” does the heavy lifting.

The idea of MapReduce was defined in a paper written by two Google engineers in
2004, titled "MapReduce: Simplified Data Processing on Large Clusters" (J. Dean, S.
Ghemawat). The paper describes both the programming model and (parts of) Google’s
specific implementation of the framework. Hadoop MapReduce is an open source im-
plementation of the model described in this paper and tracks the implementation
closely.

Specifically developed to deal with large-scale workloads, MapReduce provides the
following features:

Simplicity of development
MapReduce is dead simple for developers: no socket programming, no threading
or fancy synchronization logic, no management of retries, no special techniques to
deal with enormous amounts of data. Developers use functional programming
concepts to build data processing applications that operate on one record at a time.

25

www.it-ebooks.info

http://www.it-ebooks.info/

Map functions operate on these records and produce intermediate key-value pairs.
The reduce function then operates on the intermediate key-value pairs, processing
all values that have the same key together and outputting the result. These primi-
tives can be used to implement filtering, projection, grouping, aggregation, and
other common data processing functions.

Scale
Since tasks do not communicate with one another explicitly and do not share state,
they can execute in parallel and on separate machines. Additional machines can
be added to the cluster and applications immediately take advantage of the addi-
tional hardware with no change at all. MapReduce is designed to be a share noth-
ing system.

Automatic parallelization and distribution of work
Developers focus on the map and reduce functions that process individual records
(where “record” is an abstract concept—it could be a line of a file or a row from a
relational database) in a dataset. The storage of the dataset is not prescribed by
MapReduce, although it is extremely common, as we’ll see later, that files on a
distributed filesystem are an excellent pairing. The framework is responsible for
splitting a MapReduce job into tasks. Tasks are then executed on worker nodes or
(less pleasantly) slaves.

Fault tolerance
Failure is not an exception; it’s the norm. MapReduce treats failure as a first-class
citizen and supports reexecution of failed tasks on healthy worker nodes in the
cluster. Should a worker node fail, all tasks are assumed to be lost, in which case
they are simply rescheduled elsewhere. The unit of work is always the task, and it
either completes successfully or it fails completely.

In MapReduce, users write a client application that submits one or more jobs that con-
tain user-supplied map and reduce code and a job configuration file to a cluster of
machines. The job contains a map function and a reduce function, along with job con-
figuration information that controls various aspects of its execution. The framework
handles breaking the job into tasks, scheduling tasks to run on machines, monitoring
each task’s health, and performing any necessary retries of failed tasks. A job processes
an input dataset specified by the user and usually outputs one as well. Commonly, the
input and output datasets are one or more files on a distributed filesystem. This is one
of the ways in which Hadoop MapReduce and HDFS work together, but we’ll get into
that later.

The Stages of MapReduce
A MapReduce job is made up of four distinct stages, executed in order: client job sub-
mission, map task execution, shuffle and sort, and reduce task execution. Client ap-
plications can really be any type of application the developer desires, from command-
line tools to services. The MapReduce framework provides a set of APIs for submitting

26 | Chapter 3: MapReduce

www.it-ebooks.info

http://www.it-ebooks.info/

jobs and interacting with the cluster. The job itself is made up of code written by a
developer against the MapReduce APIs and the configuration which specifies things
such as the input and output datasets.

As described earlier, the client application submits a job to the cluster using the frame-
work APIs. A master process, called the jobtracker in Hadoop MapReduce, is respon-
sible for accepting these submissions (more on the role of the jobtracker later). Job
submission occurs over the network, so clients may be running on one of the cluster
nodes or not; it doesn’t matter. The framework gets to decide how to split the input
dataset into chunks, or input splits, of data that can be processed in parallel. In Hadoop
MapReduce, the component that does this is called an input format, and Hadoop comes
with a small library of them for common file formats. We’re not going to get too deep
into the APIs of input formats or even MapReduce in this book. For that, check out
Hadoop: The Definitive Guide by Tom White (O’Reilly).

In order to better illustrate how MapReduce works, we’ll use a simple application log
processing example where we count all events of each severity within a window of time.
If you’re allergic to writing or reading code, don’t worry. We’ll use just enough pseu-
docode for you to get the idea. Let’s assume we have 100 GB of logs in a directory in
HDFS. A sample of log records might look something like this:

2012-02-13 00:23:54-0800 [INFO - com.company.app1.Main] Application started!
2012-02-13 00:32:02-0800 [WARN - com.company.app1.Main] Something hinky↵
 is going down...
2012-02-13 00:32:19-0800 [INFO - com.company.app1.Main] False alarm. No worries.
...
2012-02-13 09:00:00-0800 [DEBUG - com.company.app1.Main] coffee units remaining:zero↵
 - triggering coffee time.
2012-02-13 09:00:00-0800 [INFO - com.company.app1.Main] Good morning. It's↵
 coffee time.

For each input split, a map task is created that runs the user-supplied map function on
each record in the split. Map tasks are executed in parallel. This means each chunk of
the input dataset is being processed at the same time by various machines that make
up the cluster. It’s fine if there are more map tasks to execute than the cluster can handle.
They’re simply queued and executed in whatever order the framework deems best. The
map function takes a key-value pair as input and produces zero or more intermediate
key-value pairs.

The input format is responsible for turning each record into its key-value pair repre-
sentation. For now, trust that one of the built-in input formats will turn each line of
the file into a value with the byte offset into the file provided as the key. Getting back
to our example, we want to write a map function that will filter records for those within
a specific timeframe, and then count all events of each severity. The map phase is where
we’ll perform the filtering. We’ll output the severity and the number 1 for each record
that we see with that severity.

function map(key, value) {
 // Example key: 12345 - the byte offset in the file (not really interesting).

The Stages of MapReduce | 27

www.it-ebooks.info

http://shop.oreilly.com/product/0636920021773.do
http://www.it-ebooks.info/

 // Example value: 2012-02-13 00:23:54-0800 [INFO - com.company.app1.Main]↵
 // Application started!

 // Do the nasty record parsing to get dateTime, severity,
 // className, and message.
 (dateTime, severity, className, message) = parseRecord(value);

 // If the date is today...
 if (dateTime.date() == '2012-02-13') {
 // Emit the severity and the number 1 to say we saw one of these records.
 emit(severity, 1);
 }
}

Notice how we used an if statement to filter the data by date so that we got only the
records we wanted. It’s just as easy to output multiple records in a loop. A map function
can do just about whatever it wants with each record. Reducers, as we’ll see later,
operate on the intermediate key-value data we output from the mapper.

Given the sample records earlier, our intermediate data would look as follows:

DEBUG, 1
INFO, 1
INFO, 1
INFO, 1
WARN, 1

A few interesting things are happening here. First, we see that the key INFO repeats,
which makes sense because our sample contained three INFO records that would have
matched the date 2012-02-13. It’s perfectly legal to output the same key or value mul-
tiple times. The other notable effect is that the output records are not in the order we
would expect. In the original data, the first record was an INFO record, followed by
WARN, but that’s clearly not the case here. This is because the framework sorts the output
of each map task by its key. Just like outputting the value 1 for each record, the rationale
behind sorting the data will become clear in a moment.

Further, each key is assigned to a partition using a component called the partitioner. In
Hadoop MapReduce, the default partitioner implementation is a hash partitioner that
takes a hash of the key, modulo the number of configured reducers in the job, to get a
partition number. Because the hash implementation used by Hadoop ensures the hash
of the key INFO is always the same on all machines, all INFO records are guaranteed to
be placed in the same partition. The intermediate data isn’t physically partitioned, only
logically so. For all intents and purposes, you can picture a partition number next to
each record; it would be the same for all records with the same key. See Figure 3-1 for
a high-level overview of the execution of the map phase.

28 | Chapter 3: MapReduce

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 3-1. Map execution phase

Ultimately, we want to run the user’s reduce function on the intermediate output data.
A number of guarantees, however, are made to the developer with respect to the re-
ducers that need to be fulfilled.

• If a reducer sees a key, it will see all values for that key. For example, if a reducer
receives the INFO key, it will always receive the three number 1 values.

• A key will be processed by exactly one reducer. This makes sense given the pre-
ceding requirement.

• Each reducer will see keys in sorted order.

The next phase of processing, called the shuffle and sort, is responsible for enforcing
these guarantees. The shuffle and sort phase is actually performed by the reduce tasks
before they run the user’s reduce function. When started, each reducer is assigned one
of the partitions on which it should work. First, they copy the intermediate key-value
data from each worker for their assigned partition. It’s possible that tens of thousands
of map tasks have run on various machines throughout the cluster, each having output
key-value pairs for each partition. The reducer assigned partition 1, for example, would
need to fetch each piece of its partition data from potentially every other worker in the
cluster. A logical view of the intermediate data across all machines in the cluster might
look like this:

The Stages of MapReduce | 29

www.it-ebooks.info

http://www.it-ebooks.info/

worker 1, partition 2, DEBUG, 1
worker 1, partition 1, INFO, 1
worker 2, partition 1, INFO, 1
worker 2, partition 1, INFO 1
worker 3, partition 2, WARN, 1

Copying the intermediate data across the network can take a fair amount of time, de-
pending on how much data there is. To minimize the total runtime of the job, the
framework is permitted to begin copying intermediate data from completed map tasks
as soon as they are finished. Remember that the shuffle and sort is being performed by
the reduce tasks, each of which takes up resources in the cluster. We want to start the
copy phase soon enough that most of the intermediate data is copied before the final
map task completes, but not so soon that the data is copied leaving the reduce tasks
idly taking up resources that could be used by other reduce tasks. Knowing when to
start the copy process can be tricky, and it’s largely based on the available bandwidth
of the network. See mapred.reduce.slowstart.completed.maps on page 129 for infor-
mation about how to configure when the copy is started.

Once the reducer has received its data, it is left with many small bits of its partition,
each of which is sorted by key. What we want is a single list of key-value pairs, still
sorted by key, so we have all values for each key together. The easiest way to accomplish
this is by performing a merge sort of the data. A merge sort takes a number of sorted
items and merges them together to form a fully sorted list using a minimal amount of
memory. With the partition data now combined into a complete sorted list, the user’s
reducer code can now be executed:

Logical data input to the reducer assigned partition 1:
INFO, [1, 1, 1]

Logical data input to the reducer assigned partition 2:
DEBUG, [1]
WARN, [1]

The reducer code in our example is hopefully clear at this point:

function reduce(key, iterator<values>) {
 // Initialize a total event count.
 totalEvents = 0;

 // For each value (a number one)...
 foreach (value in values) {
 // Add the number one to the total.
 totalEvents += value;
 }

 // Emit the severity (the key) and the total events we saw.
 // Example key: INFO
 // Example value: 3
 emit(key, totalEvents);
}

30 | Chapter 3: MapReduce

www.it-ebooks.info

http://www.it-ebooks.info/

Each reducer produces a separate output file, usually in HDFS (see Figure 3-2). Separate
files are written so that reducers do not have to coordinate access to a shared file. This
greatly reduces complexity and lets each reducer run at whatever speed it can. The
format of the file depends on the output format specified by the author of the MapRe-
duce job in the job configuration. Unless the job does something special (and most
don’t) each reducer output file is named part-<XXXXX>, where <XXXXX> is the number
of the reduce task within the job, starting from zero. Sample reducer output for our
example job would look as follows:

Reducer for partition 1:
INFO, 3

Reducer for partition 2:
DEBUG, 1
WARN, 1

Figure 3-2. Shuffle and sort, and reduce phases

For those that are familiar with SQL and relational databases, we could view the logs
as a table with the schema:

CREATE TABLE logs (
 EVENT_DATE DATE,
 SEVERITY VARCHAR(8),

The Stages of MapReduce | 31

www.it-ebooks.info

http://www.it-ebooks.info/

 SOURCE VARCHAR(128),
 MESSAGE VARCHAR(1024)
)

We would, of course, have to parse the data to get it into a table with this schema, but
that’s beside the point. (In fact, the ability to deal with semi-structured data as well as
act as a data processing engine are two of Hadoop’s biggest benefits.) To produce the
same output, we would use the following SQL statement. In the interest of readability,
we’re ignoring the fact that this doesn’t yield identically formatted output; the data is
the same.

SELECT SEVERITY,COUNT(*)
 FROM logs GROUP BY SEVERITY
 WHERE EVENT_DATE = '2012-02-13'
 GROUP BY SEVERITY
 ORDER BY SEVERITY

As exciting as all of this is, MapReduce is not a silver bullet. It is just as important to
know how MapReduce works and what it’s good for, as it is to understand why Map-
Reduce is not going to end world hunger or serve you breakfast in bed.

MapReduce is a batch data processing system
The design of MapReduce assumes that jobs will run on the order of minutes, if
not hours. It is optimized for full table scan style operations. Consequently, it un-
derwhelms when attempting to mimic low-latency, random access patterns found
in traditional online transaction processing (OLTP) systems. MapReduce is not a
relational database killer, nor does it purport to be.

MapReduce is overly simplistic
One of its greatest features is also one of its biggest drawbacks: MapReduce is
simple. In cases where a developer knows something special about the data and
wants to make certain optimizations, he may find the model limiting. This usually
manifests as complaints that, while the job is faster in terms of wall clock time, it’s
far less efficient in MapReduce than in other systems. This can be very true. Some
have said MapReduce is like a sledgehammer driving a nail; in some cases, it’s more
like a wrecking ball.

MapReduce is too low-level
Compared to higher-level data processing languages (notably SQL), MapReduce
seems extremely low-level. Certainly for basic query-like functionality, no one
wants to write, map, and reduce functions. Higher-level languages built atop Map-
Reduce exist to simplify life, and unless you truly need the ability to touch terabytes
(or more) of raw data, it can be overkill.

Not all algorithms can be parallelized
There are entire classes of problems that cannot easily be parallelized. The act of
training a model in machine learning, for instance, cannot be parallelized for many
types of models. This is true for many algorithms where there is shared state or
dependent variables that must be maintained and updated centrally. Sometimes

32 | Chapter 3: MapReduce

www.it-ebooks.info

http://www.it-ebooks.info/

it’s possible to structure problems that are traditionally solved using shared state
differently such that they can be fit into the MapReduce model, but at the cost of
efficiency (shortest path−finding algorithms in graph processing are excellent ex-
amples of this). Other times, while this is possible, it may not be ideal for a host of
reasons. Knowing how to identify these kinds of problems and create alternative
solutions is far beyond the scope of this book and an art in its own right. This is
the same problem as the “mythical man month,” but is most succinctly expressed
by stating, “If one woman can have a baby in nine months, nine women should be
able to have a baby in one month,” which, in case it wasn’t clear, is decidedly false.

Introducing Hadoop MapReduce
Hadoop MapReduce is a specific implementation of the MapReduce programming
model, and the computation component of the Apache Hadoop project. The combi-
nation of HDFS and MapReduce is incredibly powerful, in much the same way that
Google’s GFS and MapReduce complement each other. Hadoop MapReduce is inher-
ently aware of HDFS and can use the namenode during the scheduling of tasks to decide
the best placement of map tasks with respect to machines where there is a local copy
of the data. This avoids a significant amount of network overhead during processing,
as workers do not need to copy data over the network to access it, and it removes one
of the primary bottlenecks when processing huge amounts of data.

Hadoop MapReduce is similar to traditional distributed computing systems in that
there is a framework and there is the user’s application or job. A master node coordi-
nates cluster resources while workers simply do what they’re told, which in this case
is to run a map or reduce task on behalf of a user. Client applications written against
the Hadoop APIs can submit jobs either synchronously and block for the result, or
asynchronously and poll the master for job status. Cluster daemons are long-lived while
user tasks are executed in ephemeral child processes. Although executing a separate
process incurs the overhead of launching a separate JVM, it isolates the framework
from untrusted user code that could—and in many cases does—fail in destructive ways.
Since MapReduce is specifically targeting batch processing tasks, the additional over-
head, while undesirable, is not necessarily a showstopper.

One of the ingredients in the secret sauce of MapReduce is the notion of data locality,
by which we mean the ability to execute computation on the same machine where the
data being processed is stored. Many traditional high-performance computing (HPC)
systems have a similar master/worker model, but computation is generally distinct from
data storage. In the classic HPC model, data is usually stored on a large shared cen-
tralized storage system such as a SAN or NAS. When a job executes, workers fetch the
data from the central storage system, process it, and write the result back to the storage
device. The problem is that this can lead to a storm effect when there are a large number
of workers attempting to fetch the same data at the same time and, for large datasets,
quickly causes bandwidth contention. MapReduce flips this model on its head. Instead

Introducing Hadoop MapReduce | 33

www.it-ebooks.info

http://www.it-ebooks.info/

of using a central storage system, a distributed filesystem is used where each worker is
usually1 both a storage node as well as a compute node. Blocks that make up files are
distributed to nodes when they are initially written and when computation is
performed, the user-supplied code is executed on the machine where the block can be
pushed to the machine where the block is stored locally. Remember that HDFS stores
multiple replicas of each block. This is not just for data availability in the face of failures,
but also to increase the chance that a machine with a copy of the data has available
capacity to run a task.

Daemons
There are two major daemons in Hadoop MapReduce: the jobtracker and the
tasktracker.

Jobtracker

The jobtracker is the master process, responsible for accepting job submissions from
clients, scheduling tasks to run on worker nodes, and providing administrative func-
tions such as worker health and task progress monitoring to the cluster. There is one
jobtracker per MapReduce cluster and it usually runs on reliable hardware since a
failure of the master will result in the failure of all running jobs. Clients and tasktrackers
(see “Tasktracker” on page 35) communicate with the jobtracker by way of remote
procedure calls (RPC).

Just like the relationship between datanodes and the namenode in HDFS, tasktrackers
inform the jobtracker as to their current health and status by way of regular heartbeats.
Each heartbeat contains the total number of map and reduce task slots available (see
“Tasktracker” on page 35), the number occupied, and detailed information about
any currently executing tasks. After a configurable period of no heartbeats, a tasktracker
is assumed dead. The jobtracker uses a thread pool to process heartbeats and client
requests in parallel.

When a job is submitted, information about each task that makes up the job is stored
in memory. This task information updates with each tasktracker heartbeat while the
tasks are running, providing a near real-time view of task progress and health. After the
job completes, this information is retained for a configurable window of time or until
a specified number of jobs have been executed. On an active cluster where many jobs,
each with many tasks, are running, this information can consume a considerable
amount of RAM. It’s difficult to estimate memory consumption without knowing how
big each job will be (measured by the number of tasks it contains) or how many jobs

1. While it’s possible to separate them, this rarely makes sense because you lose the data locality features
of Hadoop MapReduce. Those that wish to run only Apache HBase, on the other hand, very commonly
run just the HDFS daemons along with their HBase counterparts.

34 | Chapter 3: MapReduce

www.it-ebooks.info

http://www.it-ebooks.info/

will run within a given timeframe. For this reason, monitoring jobtracker memory uti-
lization is absolutely critical.

The jobtracker provides an administrative web interface that, while a charming flash-
back to web (anti-)design circa 1995, is incredibly information-rich and useful. As
tasktrackers all must report in to the jobtracker, a complete view of the available cluster
resources is available via the administrative interface. Each job that is submitted has a
job-level view that offers links to the job’s configuration, as well as data about progress,
the number of tasks, various metrics, and task-level logs. If you are to be responsible
for a production Hadoop cluster, you will find yourself checking this interface con-
stantly throughout the day.

The act of deciding which tasks of a job should be executed on which worker nodes is
referred to as task scheduling. This is not scheduling in the way that the cron daemon
executes jobs at given times, but instead is more like the way the OS kernel schedules
process CPU time. Much like CPU time sharing, tasks in a MapReduce cluster share
worker node resources, or space, but instead of context switching—that is, pausing the
execution of a task to give another task time to run—when a task executes, it executes
completely. Understanding task scheduling—and by extension, resource allocation
and sharing—is so important that an entire chapter (Chapter 7) is dedicated to the
subject.

Tasktracker

The second daemon, the tasktracker, accepts task assignments from the jobtracker,
instantiates the user code, executes those tasks locally, and reports progress back to
the jobtracker periodically. There is always a single tasktracker on each worker node.
Both tasktrackers and datanodes run on the same machines, which makes each node
both a compute node and a storage node, respectively. Each tasktracker is configured
with a specific number of map and reduce task slots that indicate how many of each
type of task it is capable of executing in parallel. A task slot is exactly what it sounds
like; it is an allocation of available resources on a worker node to which a task may be
assigned, in which case it is executed. A tasktracker executes some number of map
tasks and reduce tasks in parallel, so there is concurrency both within a worker where
many tasks run, and at the cluster level where many workers exist. Map and reduce
slots are configured separately because they consume resources differently. It is com-
mon that tasktrackers allow more map tasks than reduce tasks to execute in parallel
for reasons described in “MapReduce” on page 120. You may have picked up on the
idea that deciding the number of map and reduce task slots is extremely important to
making full use of the worker node hardware, and you would be correct.

Upon receiving a task assignment from the jobtracker, the tasktracker executes an
attempt of the task in a separate process. The distinction between a task and a task
attempt is important: a task is the logical unit of work, while a task attempt is a specific,
physical instance of that task being executed. Since an attempt may fail, it is possible
that a task has multiple attempts, although it’s common for tasks to succeed on their

Introducing Hadoop MapReduce | 35

www.it-ebooks.info

http://www.it-ebooks.info/

first attempt when everything is in proper working order. As this implies, each task in
a job will always have at least one attempt, assuming the job wasn’t administratively
killed. Communication between the task attempt (usually called the child, or child pro-
cess) and the tasktracker is maintained via an RPC connection over the loopback in-
terface called the umbilical protocol. The task attempt itself is a small application that
acts as the container in which the user’s map or reduce code executes. As soon as the
task completes, the child exits and the slot becomes available for assignment.

The tasktracker uses a list of user-specified directories (each of which is assumed to be
on a separate physical device) to hold the intermediate map output and reducer input
during job execution. This is required because this data is usually too large to fit ex-
clusively in memory for large jobs or when many jobs are running in parallel.

Tasktrackers, like the jobtracker, also have an embedded web server and user interface.
It’s rare, however, that administrators access this interface directly since it’s unusual
to know the machine you need to look at without first referencing the jobtracker in-
terface, which already provides links to the tasktracker interface for the necessary
information.

When It All Goes Wrong
Rather than panic when things go wrong, MapReduce is designed to treat failures as
common and has very well-defined semantics for dealing with the inevitable. With tens,
hundreds, or even thousands of machines making up a Hadoop cluster, machines—
and especially hard disks—fail at a significant rate. It’s not uncommon to find that
approximately 2% to 5% of the nodes in a large Hadoop cluster have some kind of
fault, meaning they are operating either suboptimally or simply not at all. In addition
to faulty servers, there can sometimes be errant user MapReduce jobs, network failures,
and even errors in the data.

Child task failures

It’s common for child tasks to fail for a variety of reasons: incorrect or poorly imple-
mented user code, unexpected data problems, temporary machine failures, and ad-
ministrative intervention are a few of the more common causes. A child task is con-
sidered to be failed when one of three things happens:

• It throws an uncaught exception.

• It exits with a nonzero exit code.

• It fails to report progress to the tasktracker for a configurable amount of time.

When a failure is detected by the tasktracker, it is reported to the jobtracker in the next
heartbeat. The jobtracker, in turn, notes the failure and if additional attempts are per-
mitted (the default limit is four attempts), reschedules the task to run. The task may
be run either on the same machine or on another machine in the cluster, depending on
available capacity. Should multiple tasks from the same job fail on the same tasktracker

36 | Chapter 3: MapReduce

www.it-ebooks.info

http://www.it-ebooks.info/

repeatedly, the tasktracker is added to a job-level blacklist that prevents any other tasks
from the same job from executing on the tasktracker in question. If multiple tasks from
different jobs repeatedly fail on a specific tasktracker, the tasktracker in question is
added to a global blacklist for 24 hours, which prevents any tasks from being scheduled
on that tasktracker.

Tasktracker/worker node failures

The next obvious failure condition is the loss of the tasktracker daemon or the entire
worker node. The jobtracker, after a configurable amount of time with no heartbeats,
will consider the tasktracker dead along with any tasks it was assigned. Tasks are re-
scheduled and will execute on another tasktracker; the client application is completely
shielded from the internal failure and as far as it’s concerned, the job appears to simply
slow down for some time while tasks are retried.

Jobtracker failures

The loss of the jobtracker is more severe in Hadoop MapReduce. Should the jobtracker
(meaning either the process or the machine on which it runs) fail, its internal state about
currently executing jobs is lost. Even if it immediately recovers, all running tasks will
eventually fail. This effectively means the jobtracker is a single point of failure (SPOF)
for the MapReduce layer—a current limitation of Hadoop MapReduce.

HDFS failures

For jobs whose input or output dataset is on HDFS, it’s possible that HDFS could
experience a failure. This is the equivalent of the filesystem used by a relational database
experiencing a failure while the database is running. In other words, it’s bad. If a da-
tanode process fails, any task that is currently reading from or writing to it will follow
the HDFS error handling described in Chapter 2. Unless all datanodes containing a
block fail during a read, or the namenode cannot find any datanodes on which to place
a block during a write, this is a recoverable case and the task will complete. When the
namenode fails, tasks will fail the next time they try to make contact with it. The
framework will retry these tasks, but if the namenode doesn’t return, all attempts will
be exhausted and the job will eventually fail. Additionally, if the namenode isn’t avail-
able, new jobs cannot be submitted to the cluster since job artifacts (such as the JAR
file containing the user’s code) cannot be written to HDFS, nor can input splits be
calculated.

YARN
Hadoop MapReduce is not without its flaws. The team at Yahoo! ran into a number of
scalability limitations that were difficult to overcome given Hadoop’s existing archi-
tecture and design. In large-scale deployments such as Yahoo!’s “Hammer” cluster—
a single, 4,000-plus node Hadoop cluster that powers various systems—the team found

YARN | 37

www.it-ebooks.info

http://www.it-ebooks.info/

that the resource requirements on a single jobtracker were just too great. Further, op-
erational issues such as dealing with upgrades and the single point of failure of the
jobtracker were painful. YARN (or “Yet Another Resource Negotiator”) was created to
address these issues.

Rather than have a single daemon that tracks and assigns resources such as CPU and
memory and handles MapReduce-specific job tracking, these functions are separated
into two parts. The resource management aspect of the jobtracker is run as a new
daemon called the resource manager,; a separate daemon responsible for creating and
allocating resources to multiple applications. Each application is an individual Map-
Reduce job, but rather than have a single jobtracker, each job now has its own job-
tracker-equivalent called an application master that runs on one of the workers of the
cluster. This is very different from having a centralized jobtracker in that the application
master of one job is now completely isolated from that of any other. This means that
if some catastrophic failure were to occur within the jobtracker, other jobs are unaf-
fected. Further, because the jobtracker is now dedicated to a specific job, multiple
jobtrackers can be running on the cluster at once. Taken one step further, each job-
tracker can be a different version of the software, which enables simple rolling upgrades
and multiversion support. When an application completes, its application master, such
as the jobtracker, and other resources are returned to the cluster. As a result, there’s
no central jobtracker daemon in YARN.

Worker nodes in YARN also run a new daemon called the node manager in place of
the traditional tasktracker. While the tasktracker expressly handled MapReduce-spe-
cific functionality such as launching and managing tasks, the node manager is more
generic. Instead, the node manager launches any type of process, dictated by the ap-
plication, in an application container. For instance, in the case of a MapReduce appli-
cation, the node manager manages both the application master (the jobtracker) as well
as individual map and reduce tasks.

With the ability to run arbitrary applications, each with its own application master, it’s
even possible to write non-MapReduce applications that run on YARN. Not entirely
an accident, YARN provides a compute-model-agnostic resource management frame-
work for any type of distributed computing framework. Members of the Hadoop com-
munity have already started to look at alternative processing systems that can be built
on top of YARN for specific problem domains such as graph processing and more
traditional HPC systems such as MPI.

The flexibility of YARN is enticing, but it’s still a new system. At the time of this writing,
YARN is still considered alpha-level software and is not intended for production use.
Initially introduced in the Apache Hadoop 2.0 branch, YARN hasn’t yet been battle-
tested in large clusters. Unfortunately, while the Apache Hadoop 2.0 lineage includes
highly desirable HDFS features such as high availability, the old-style jobtracker and
tasktracker daemons (now referred to as MapReduce version one, or MRv1) have been
removed in favor of YARN. This creates a potential conflict for Apache Hadoop users
that want these features with the tried and true MRv1 daemons. CDH4, however, in-

38 | Chapter 3: MapReduce

www.it-ebooks.info

http://www.it-ebooks.info/

cludes the HDFS features as well as both MRv1 and YARN. For more information on
Hadoop distributions, versions, and features, see “Picking a Distribution and Version
of Hadoop” on page 41. Since YARN is not yet stable, and the goal of this book is to
provide pragmatic operational advice, the remainder of the content will focus exclu-
sively on the MRv1 daemons and their configuration.

YARN | 39

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Planning a Hadoop Cluster

Picking a Distribution and Version of Hadoop
One of the first tasks to take on when planning an Hadoop deployment is selecting the
distribution and version of Hadoop that is most appropriate given the features and
stability required. This process requires input from those that will eventually use the
cluster: developers, analysts, and possibly other systems such as business intelligence
applications. This isn’t dissimilar from selecting a relational database based on what is
required by downstream applications. For instance, some relational databases support
extensions to SQL for advanced analytics, while other support features such as table
partitioning in order to scale large tables or improve query performance.

Hadoop is, as previously mentioned, an Apache Software Foundation (ASF) project.
This means it’s available directly from Apache in both source and binary formats. It’s
extremely common though for people to use more than just core Hadoop. While Ha-
doop is absolutely critical—after all, it provides not just the distributed file-system, but
also the MapReduce processing framework—many users view it as the core of a larger
system. In this sense, Hadoop is analogous to an operating system kernel, giving us the
core functionality upon which we build higher-level systems and tools. Many of these
related libraries, tools, languages, and systems are also open source projects available
from the ASF.

There is an inherent complexity in assembling these projects or components into a
cohesive system. Because Hadoop is a distributed system, tools and libraries that access
it must be wire- and API-compatible. Going back to the relational database analogy,
this isn’t a new set of problems, but it’s something of which administrators must be
aware during the planning and deployment phases.

Apache Hadoop
The Apache Software Foundation is where all Apache Hadoop development happens.
Administrators can download Hadoop directly from the project website at http://ha
doop.apache.org. Historically, Apache Hadoop has produced infrequent releases,

41

www.it-ebooks.info

http://hadoop.apache.org
http://hadoop.apache.org
http://www.it-ebooks.info/

although starting with version 1.0, this has changed, with releases coming more fre-
quently. All code produced by the ASF is Apache-licensed.

Apache Hadoop is distributed as tarballs containing both source and binary artifacts.
Starting around version 1.0, support for building RPM and Debian packages was added
to the build system, and later releases provide these artifacts for download.

Cloudera’s Distribution Including Apache Hadoop
Cloudera, a company that provides support, consulting, and management tools for
Hadoop, also has a distribution of software called Cloudera’s Distribution Including
Apache Hadoop, or just CDH. Just as with the ASF version, this is 100% open source
software available under the Apache Software License and is free for both personal and
commercial use. Just as many open source software companies do for other systems,
Cloudera starts with a stable Apache Hadoop release, puts it on a steady release ca-
dence, backports critical fixes, provides packages for a number of different operating
systems, and has a commercial-grade QA and testing process. Cloudera employs many
of the Apache Hadoop committers (the people who have privileges to commit code to
the Apache source repositories) who work on Hadoop full-time.

Since many users deploy many of the projects related to Apache Hadoop, Cloudera
includes these projects in CDH as well and guarantees compatibility between compo-
nents. CDH currently includes Apache Hadoop, Apache HBase, Apache Hive, Apache
Pig, Apache Sqoop, Apache Flume, Apache ZooKeeper, Apache Oozie, Apache Ma-
hout, and Hue. A complete list of components included in CDH is available at http://
www.cloudera.com/hadoop-details/.

Major versions of CDH are released yearly with patches released quarterly. At the time
of this writing, the most recent major release of CDH is CDH4, which is based on
Apache Hadoop 2.0.0. It includes the major HDFS improvements such as namenode
high availability, as well as also a forward port of the battle-tested MRv1 daemons (in
addition to the alpha version of YARN) so as to be production-ready.

CDH is available as tarballs, RedHat Enterprise Linux 5 and 6 RPMs, SuSE Enterprise
Linux RPMs, and Debian Deb packages. Additionally, Yum, Zypper, and Apt reposi-
tories are provided for their respective systems to ease installation.

Versions and Features
Hadoop has seen significant interest over the past few years. This has led to a propor-
tional uptick in features and bug fixes. Some of these features were so significant or
had such a sweeping impact that they were developed on branches. As you might ex-
pect, this in turn led to a somewhat dizzying array of releases and parallel lines of
development.

42 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://www.cloudera.com/hadoop-details/
http://www.cloudera.com/hadoop-details/
http://www.it-ebooks.info/

Here is a whirlwind tour of the various lines of development and their status. This
information is also depicted visually in Figure 4-1.

0.20.0–0.20.2
The 0.20 branch of Hadoop is extremely stable and has seen quite a bit of pro-
duction burn-in. This branch has been one of the longest-lived branches in Ha-
doop’s history since being at Apache, with the first release appearing in April 2009.
CDH2 and CDH3 are both based off of this branch, albeit with many features and
bug fixes from 0.21, 0.22, and 1.0 back-ported.

0.20-append
One of the features missing from 0.20 was support for file appends in HDFS.
Apache HBase relies on the ability to sync its write ahead log, (such as force file
contents to disk) which under the hood, uses the same basic functionality as file
append. Append was considered a potentially destabilizing feature and many dis-
agreed on the implementation, so it was relegated to a branch. This branch was
called 0.20-append. No official release was ever made from the 0.20-append
branch.

0.20-security
Yahoo!, one of the major contributors to Apache Hadoop, invested in adding full
Kerberos support to core Hadoop. It later contributed this work back to Hadoop
in the form of the 0.20-security branch, a version of Hadoop 0.20 with Kerberos
authentication support. This branch would later be released as the 0.20.20X re-
leases.

0.20.203–0.20.205
There was a strong desire within the community to produce an official release of
Hadoop that included the 0.20-security work. The 0.20.20X releases contained not
only security features from 0.20-security, but also bug fixes and improvements on
the 0.20 line of development. Generally, it no longer makes sense to deploy these
releases as they’re superseded by 1.0.0.

0.21.0
The 0.21 branch was cut from Hadoop trunk and released in August 2010. This
was considered a developer preview or alpha quality release to highlight some of
the features that were currently in development at the time. Despite the warning
from the Hadoop developers, a small number of users deployed the 0.21 release
anyway. This release does not include security, but does have append.

0.22.0
Hold on, because this is where the story gets weird. In December 2011, the Hadoop
community released version 0.22, which was based on trunk, like 0.21 was. This
release includes security, but only for HDFS. Also a bit strange, 0.22 was released
after 0.23 with less functionality. This was due to when the 0.22 branch was cut
from trunk.

Picking a Distribution and Version of Hadoop | 43

www.it-ebooks.info

http://www.it-ebooks.info/

0.23.0
In November 2011, version 0.23 of Hadoop was released. Also cut from trunk,
0.23 includes security, append, YARN, and HDFS federation. This release has been
dubbed a developer preview or alpha-quality release. This line of development is
superseded by 2.0.0.

1.0.0
In a continuing theme of confusion, version 1.0.0 of Hadoop was released from
the 0.20.205 line of development. This means that 1.0.0 does not contain all of the
features and fixes found in the 0.21, 0.22, and 0.23 releases. That said, it does
include security.

2.0.0
In May 2012, version 2.0.0 was released from the 0.23.0 branch and like 0.23.0, is
considered alpha-quality. Mainly, this is because it includes YARN and removes
the traditional MRv1 jobtracker and tasktracker daemons. While YARN is API-
compatible with MRv1, the underlying implementation is different enough for it
to require more significant testing before being considered production-ready.

Figure 4-1. Hadoop branches and releases

What Should I Use?
The version of Hadoop you select for deployment will ultimately be driven by the fea-
ture set you require for your applications. For many, only the releases targeted for
production use are an option. This narrows the field to the 0.20, 1.0, and CDH releases
almost immediately. Users who want to run HBase will also require append support.

44 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://www.it-ebooks.info/

Feature 0.20 0.21 0.22 0.23 1.0 2.0 CDH
3

CDH
4

Production quality X X X X

HDFS append X X X X X X X

Kerberos security Xa X X X X X X

HDFS symlinks X X X X X

YARN (MRv2) X X X

MRv1 daemonsb X X X X X X

Namenode federation X X X

Namenode HA X X X
a. Support for Kerberos-enabled HDFS only.
b. All versions include support for the MRv1 APIs.

Hardware Selection
When planning an Hadoop cluster, picking the right hardware is critical. No one likes
the idea of buying 10, 50, or 500 machines just to find out she needs more RAM or
disk. Hadoop is not unlike traditional data storage or processing systems in that the
proper ratio of CPU to memory to disk is heavily influenced by the workload. There
are, of course, some guidelines and a reasonable base configuration, but some knowl-
edge of the intended workload will greatly increase the likelihood of optimum utiliza-
tion of the hardware.

As you probably already know, one of the major advantages of Hadoop is its ability to
run on so-called commodity hardware. This isn’t just a function of cost, although that
certainly plays a large role. One example of this is Hadoop’s preference for JBOD1 and
how its I/O patterns fit this model explicitly. This isn’t to say production Hadoop
clusters commonly run on $1,000 machines—your expectations of what is meant by
commodity may need adjustment—but rather that you won’t need to break the bank
by purchasing top-end servers.

Hadoop hardware comes in two distinct classes: masters and workers. Master nodes
are typically more robust to hardware failure and run critical cluster services. Loss of a
master almost certainly means some kind of service disruption. On the other hand,
worker nodes are expected to fail regularly. This directly impacts the type of hardware
as well as the amount of money spent on these two classes of hardware. It is common
that administrators, in an effort to reduce the proliferation of hardware profiles in the
data center, will select a single hardware profile for all masters and a single profile for
all workers. Those with deep pockets may find it even easier to purchase a single

1. Just a bunch of disks; a disk configuration where individual disks are accessed directly by the operating
system without the need for RAID.

Hardware Selection | 45

www.it-ebooks.info

http://www.it-ebooks.info/

Hadoop node profile and simply ignore wasted disk on the masters, for example.
There’s no single correct answer. Factors such as hardware availability, corporate
standards, cost, utilization standards, and deployment profile are beyond the scope of
this book. That being said, exercise good judgment and common sense and realize that
strict adherence to existing standards may negate many of the benefits of Hadoop.

The distinction between a node and the service assigned to said node is
important. When talking about machines, there are masters and work-
ers. These designations reflect the class of hardware. Separately, there
are the five core Hadoop services: namenode, secondary namenode,
datanode, jobtracker, and tasktracker, each a separate daemon. Services
are run on nodes of the cluster. Worker services such as the datanode
and tasktracker always run together. In smaller clusters, it sometimes
makes sense to run the master services—the namenode, secondary
namenode, and jobtracker—together. As the cluster grows, these serv-
ices are separated and dedicated hardware for each is provisioned.
When you hear “master,” the next question is always “what process?”
“Slave,” or “worker,” will always mean the datanode and tasktracker
pair.

Master Hardware Selection
For master nodes—the machines that run one or more of the namenode, jobtracker,
and secondary namenode—redundancy is the name of the game. Each of these ma-
chines serves a critical function the cluster can’t live without.2 While proponents of
Hadoop beat the commodity hardware drum, this is the place where people spend more
money and spring for the higher-end features. Dual power supplies, bonded network
interface cards (NICs), and sometimes even RAID 10 in the case of the namenode
storage device, are not uncommon to find in the wild. In general, master processes tend
to be RAM-hungry but low on disk space consumption. The namenode and jobtracker
are also rather adept at producing logs on an active cluster, so plenty of space should
be reserved on the disk or partition on which logs will be stored.

The operating system device for master nodes should be highly available. This usually
means RAID-1 (a mirrored pair of disks). Since the OS does not consume a significant
amount of space, RAID-10 or RAID-5 would be overkill and lead to unusable capacity.
Most of the real work is done on the data devices, while the OS device usually only has
to contend with logfiles in /var/log.

Small clusters—clusters with fewer than 20 worker nodes—do not require much for
master nodes in terms of hardware. A solid baseline hardware profile for a cluster of
this size is a dual quad-core 2.6 Ghz CPU, 24 GB of DDR3 RAM, dual 1 Gb Ethernet
NICs, a SAS drive controller, and at least two SATA II drives in a JBOD configuration

2. ...or at least not for long.

46 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://www.it-ebooks.info/

in addition to the host OS device. Clusters of up to 300 nodes fall into the mid-size
category and usually benefit from an additional 24 GB of RAM for a total of 48 GB.
Master nodes in large clusters should have a total of 96 GB of RAM. Remember that
these are baseline numbers meant to give you a place from which to start.

Namenode considerations

The namenode is absolutely critical to a Hadoop cluster and usually receives special
treatment. There are three things a healthy namenode absolutely requires in order to
function properly: RAM, modest but dedicated disk, and to be left alone! As we covered
previously, the namenode serves all of its metadata directly from RAM. This has the
obvious implication that all metadata must fit in physical memory. The exact amount
of RAM required depends on how much metadata there is to maintain. Remember that
the metadata contains the filename, permissions, owner and group data, list of blocks
that make up each file, and current known location of each replica of each block. As
you’d expect, this adds up.

There are subtleties to the namenode metadata that you might not otherwise think
much about. One instance of this is that the length of filenames actually starts to matter
at scale; the longer the filename, the more bytes it occupies in memory. More dubious,
though, is the small files problem. Each file is made up of one or more blocks and has
associated metadata. The more files the namenode needs to track, the more metadata
it maintains, and the more memory it requires as a result. As a base rule of thumb, the
namenode consumes roughly 1 GB for every 1 million blocks. Again, this is a guideline
and can easily be invalidated by the extremes.

Namenode disk requirements are modest in terms of storage. Since all metadata must
fit in memory, by definition, it can’t take roughly more than that on disk. Either way,
the amount of disk this really requires is minimal—less than 1 TB.

While namenode space requirements are minimal, reliability is paramount. When pro-
visioning, there are two options for namenode device management: use the namenode’s
ability to write data to multiple JBOD devices, or write to a RAID device. No matter
what, a copy of the data should always be written to an NFS (or similar) mounted
volume in addition to whichever local disk configuration is selected. This NFS mount
is the final hope for recovery when the local disks catch fire or when some equally
unappealing, apocalyptic event occurs.3 The storage configuration selected for pro-
duction usage is usually dictated by the decision to purchase homogeneous hardware
versus specially configured machines to support the master daemons. There’s no single
correct answer and as mentioned earlier, what works for you depends on a great many
factors.

3. Almost certainly, and without fail, a human will be the demise of your namenode should you not heed
the warning to leave it alone.

Hardware Selection | 47

www.it-ebooks.info

http://www.it-ebooks.info/

Secondary namenode hardware

The secondary namenode is almost always identical to the namenode. Not only does
it require the same amount of RAM and disk, but when absolutely everything goes
wrong, it winds up being the replacement hardware for the namenode. Future versions
of Hadoop (which should be available by the time you read this) will support a highly
available namenode (HA NN) which will use a pair of identical machines. When run-
ning a cluster with an HA namenode, the standby or inactive namenode instance per-
forms the checkpoint work the secondary namenode normally does.

Jobtracker hardware

Similar to the namenode and secondary namenode, the jobtracker is also memory-
hungry, although for a different reason. In order to provide job and task level-status,
counters, and progress quickly, the jobtracker keeps metadata information about the
last 100 (by default) jobs executed on the cluster in RAM. This, of course, can build
up very quickly and for jobs with many tasks, can cause the jobtracker's JVM heap to
balloon in size. There are parameters that allow an administrator to control what in-
formation is retained in memory and for how long, but it’s a trade-off; job details that
are purged from the jobtracker’s memory no longer appear in its web UI.

Due to the way job data is retained in memory, jobtracker memory requirements can
grow independent of cluster size. Small clusters that handle many jobs, or jobs with
many tasks, may require more RAM than expected. Unlike the namenode, this isn’t as
easy to predict because the variation in the number of tasks from job to job can be much
greater than the metadata in the namenode, from file to file.

Worker Hardware Selection
When sizing worker machines for Hadoop, there are a few points to consider. Given
that each worker node in a cluster is responsible for both storage and computation, we
need to ensure not only that there is enough storage capacity, but also that we have the
CPU and memory to process that data. One of the core tenets of Hadoop is to enable
access to all data, so it doesn’t make much sense to provision machines in such a way
that prohibits processing. On the other hand, it’s important to consider the type of
applications the cluster is designed to support. It’s easy to imagine use cases where the
cluster’s primary function is long-term storage of extremely large datasets with infre-
quent processing. In these cases, an administrator may choose to deviate from the
balanced CPU to memory to disk configuration to optimize for storage-dense config-
urations.

Starting from the desired storage or processing capacity and working backward is a
technique that works well for sizing machines. Consider the case where a system ingests
new data at a rate of 1 TB per day. We know Hadoop will replicate this data three times
by default, which means the hardware needs to accommodate 3 TB of new data every
day! Each machine also needs additional disk capacity to store temporary data during

48 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://www.it-ebooks.info/

processing with MapReduce. A ballpark estimate is that 20-30% of the machine’s raw
disk capacity needs to be reserved for temporary data. If we had machines with 12 × 2
TB disks, that leaves only 18 TB of space to store HDFS data, or six days' worth of data.

The same exercise can be applied to CPU and memory, although in this case, the focus
is how much a machine can do in parallel rather than how much data it can store. Let’s
take a hypothetical case where an hourly data processing job is responsible for pro-
cessing data that has been ingested. If this job were to process 1/24th of the aforemen-
tioned 1 TB of data, each execution of the job would need to process around 42 GB of
data. Commonly, data doesn’t arrive with such an even distribution throughout the
day, so there must be enough capacity to be able to handle times of the day when more
data is generated. This also addresses only a single job whereas production clusters
generally support many concurrent jobs.

In the context of Hadoop, controlling concurrent task processing means controlling
throughput with the obvious caveat of having the available processing capacity. Each
worker node in the cluster executes a predetermined number of map and reduce tasks
simultaneously. A cluster administrator configures the number of these slots, and Ha-
doop’s task scheduler—a function of the jobtracker—assigns tasks that need to execute
to available slots. Each one of these slots can be thought of as a compute unit consuming
some amount of CPU, memory, and disk I/O resources, depending on the task being
performed. A number of cluster-wide default settings dictate how much memory, for
instance, each slot is allowed to consume. Since Hadoop forks a separate JVM for each
task, the overhead of the JVM itself needs to be considered as well. This means each
machine must be able to tolerate the sum total resources of all slots being occupied by
tasks at once.

Typically, each task needs between 2 GB and 4 GB of memory, depending on the task
being performed. A machine with 48 GB of memory, some of which we need to reserve
for the host OS and the Hadoop daemons themselves, will support between 10 and 20
tasks. Of course, each task needs CPU time. Now there is the question of how much
CPU each task requires versus the amount of RAM it consumes. Worse, we haven’t yet
considered the disk or network I/O required to execute each task. Balancing the re-
source consumption of tasks is one of the most difficult tasks of a cluster administrator.
Later, we’ll explore the various configuration parameters available to control resource
consumption between jobs and tasks.

If all of this is just too nuanced, Table 4-1 has some basic hardware configurations to
start with. Note that these tend to change rapidly given the rate at which new hardware
is introduced, so use your best judgment when purchasing anything.

Hardware Selection | 49

www.it-ebooks.info

http://www.it-ebooks.info/

Table 4-1. Typical worker node hardware configurations

Midline configuration (all around, deep storage, 1 Gb Ethernet)

CPU 2 × 6 core 2.9 Ghz/15 MB cache

Memory 64 GB DDR3-1600 ECC

Disk controller SAS 6 Gb/s

Disks 12 × 3 TB LFF SATA II 7200 RPM

Network controller 2 × 1 Gb Ethernet

Notes CPU features such as Intel’s Hyper-Threading and QPI are de-
sirable. Allocate memory to take advantage of triple- or quad-
channel memory configurations.

High end configuration (high memory, spindle dense, 10 Gb Ethernet)

CPU 2 × 6 core 2.9 Ghz/15 MB cache

Memory 96 GB DDR3-1600 ECC

Disk controller 2 × SAS 6 Gb/s

Disks 24 × 1 TB SFF Nearline/MDL SAS 7200 RPM

Network controller 1 × 10 Gb Ethernet

Notes Same as the midline configuration

Cluster Sizing
Once the hardware for the worker nodes has been selected, the next obvious question
is how many of those machines are required to complete a workload. The complexity
of sizing a cluster comes from knowing—or more commonly, not knowing—the
specifics of such a workload: its CPU, memory, storage, disk I/O, or frequency of ex-
ecution requirements. Worse, it’s common to see a single cluster support many diverse
types of jobs with conflicting resource requirements. Much like a traditional relational
database, a cluster can be built and optimized for a specific usage pattern or a combi-
nation of diverse workloads, in which case some efficiency may be sacrificed.

There are a few ways to decide how many machines are required for a Hadoop de-
ployment. The first, and most common, is sizing the cluster based on the amount of
storage required. Many clusters are driven by high data ingest rates; the more data
coming into the system, the more machines required. It so happens that as machines
are added to the cluster, we get compute resources in addition to the storage capacity.
Given the earlier example of 1 TB of new data every day, a growth plan can be built
that maps out how many machines are required to store the total amount of data. It
usually makes sense to project growth for a few possible scenarios. For instance, Ta-
ble 4-2 shows a typical plan for flat growth, 5% monthly growth, and 10% monthly
growth. (See Figure 4-2.)

50 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://www.it-ebooks.info/

Table 4-2. Sample cluster growth plan based on storage

Average daily ingest rate 1 TB

Replication factor 3 (copies of
each block)

Daily raw consumption 3 TB Ingest × replication

Node raw storage 24 TB 12 × 2 TB SATA II HDD

MapReduce temp space reserve 25% For intermediate MapReduce data

Node-usable raw storage 18 TB Node raw storage – MapReduce reserve

1 year (flat growth) 61 nodesa Ingest × replication × 365 / node raw storage

1 year (5% growth per monthb) 81 nodesa

1 year (10% growth per month) 109 nodesa
a Rounded to the nearest whole machine.
b To simplify, we treat the result of the daily ingest multiplied by 365, divided by 12, as one month. Growth is compounded each month.

In Table 4-2, we assume 12 × 2 TB hard drives per node, but we could have just as easily
used half the number of drives per node and doubled the number of machines. This is
how we can adjust the ratio of resources such as the number of CPU cores to hard drive
spindles. This leads to the realization that we could purchase machines that are half as
powerful and simply buy twice as many. The trade-off, though, is that doing so would
require significantly more power, cooling, rack space, and network port density. For
these reasons, it’s usually preferable to purchase reasonably dense machines without
falling outside the normal boundaries of what is considered commodity hardware.

Figure 4-2. Cluster size growth projection for various scenarios (18 TB usable/node)

Hardware Selection | 51

www.it-ebooks.info

http://www.it-ebooks.info/

Projecting cluster size based on the completion time of specific jobs is less common,
but still makes sense in certain circumstances. This tends to be more complicated and
requires significantly more information than projections based solely on data size. Cal-
culating the number of machines required to complete a job necessitates knowing,
roughly, the amount of CPU, memory, and disk I/O used while performing a previous
invocation of the same job.

There’s a clear chicken and egg problem; a job must be run with a subset of the data
in order to understand how many machines are required to run the job at scale. An
interesting property of MapReduce jobs is that map tasks are almost always uniform
in execution. If a single map task takes one minute to execute and consumes some
amount of user and system CPU time, some amount of RAM and some amount of I/
O, 100 map tasks will simply take 100 times the resources. Reduce tasks, on the other
hand, don’t have this property. The number of reducers is defined by the developer
rather than being based on the size of the data, so it’s possible to create a situation
where the job bottlenecks on the number of reducers or an uneven distribution of data
between the reducers. The latter problem is referred to as reducer skew and is covered
in greater detail in Chapter 9.

Blades, SANs, and Virtualization
The large-scale data storage and processing industry moves in cycles. In the past, ad-
ministrators have purchased large beefy “scale-up” machines with the goal of stuffing
as much CPU, RAM, and disk into a single machine as possible. At some point, we
collectively realized this was difficult and expensive. For many data center services, we
moved to running “pizza boxes” and building in the notion of failure as a first-class
concept. A few years later, we were confronted with another problem: many machines
in the data center were drastically underutilized and the sheer number of machines was
difficult to manage. This was the dawn of the great virtualization rush. Machines were
consolidated onto a smaller number of beefy boxes, reducing power and improving
utilization. Local disk was eschewed in favor of large storage area networks (SANs) and
network attached storage (NAS) because virtual machines could now run on any phys-
ical machine in the data center. Now along comes Hadoop and everything you read
says commodity, scale-out, share-nothing hardware, but what about the existing in-
vestment in blades, shared storage systems, and virtualized infrastructure?

Hadoop, generally speaking, does not benefit from virtualization. Some of the reasons
concern the techniques used in modern virtualization, while others have more to do
with the common practices that exist in virtualized environments. Virtualization works
by running a hypervisor either in a host OS or directly on bare metal, replacing the host
OS entirely. Virtual machines (VMs) can then be deployed within a hypervisor and have
access to whatever hardware resources are allocated to them by the hypervisor.
Historically, virtualization has hurt I/O performance-sensitive applications such as
Hadoop rather significantly because guest OSes are unaware of one another as they
perform I/O scheduling operations and, as a result, can cause excessive drive seek

52 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://www.it-ebooks.info/

operations. Many virtualization vendors are aware of this and are working toward more
intelligent hypervisors, but ultimately, it’s still slower than being directly on bare metal.
For all the reasons you would not run a high-performance relational database in a VM,
you should not run Hadoop in a VM.

Those new to Hadoop from the high-performance computing (HPC) space may look
to use blade systems in their clusters. It is true that the density and power consumption
properties of blade systems are appealing; however, the shared infrastructure between
blades is generally undesirable. Blade enclosures commonly share I/O planes and net-
work connectivity, and the blades themselves usually have little to no local storage.
This is because these systems are built for compute-intensive workloads where com-
paratively little I/O is done. For those workloads, blade systems may be cost-effective
and have a distinct advantage, but for Hadoop, they struggle to keep up.

In “Worker Hardware Selection” on page 48, we talked about how Hadoop prefers
JBOD disk configurations. For many years—and for many systems—RAID has been
dominant. There’s nothing inherently wrong with RAID; it’s fast, it’s proven, and it
scales for certain types of applications. Hadoop uses disk differently. MapReduce is all
about processing massive datasets, in parallel, in large sequential I/O access patterns.
Imagine a machine with a single RAID-5 stripe with a stripe size of 64 KB running 10
simultaneous map tasks. Each task is going to read a 128 MB sequential block of data
from disk in a series of read operations. Each read operation will be of some unknown
length, dependent on the records being read and the format of the data. The problem
is that even though these 10 tasks are attempting to perform sequential reads, because
all I/O requests are issued to the same underlying device, the end result of interleaved
reads will look like random reads, drastically reducing throughput. Contrast this with
the same scenario but with 12 individual devices, each of which contains only complete
128 MB blocks. Now as I/O requests are issued by the kernel to the underlying device,
it is almost certainly in the same position it was since the last read and no seek is
performed. While it’s true that two map tasks could still contend for a block on a single
device, the probability of that being so is significantly reduced.

Another potential pain point with RAID comes from the variation in drive rotation
speed among multiple drives. Even within the same lot of drives from the same man-
ufacturer, large variance in rotation speed can occur. In RAID, since all blocks are
spread over all spindles, all operations are limited to the speed of the slowest device.
In a JBOD configuration, each disk is free to spin independently and consequently,
variance is less of an issue.

This brings us to shared storage systems such as SANs and NAS. Again, these systems
are built with specific workloads in mind, but for Hadoop, they fall short. Keep in mind
that in many ways, Hadoop was created to obviate these kinds of systems. Many of
these systems put a large number of fast disks behind one or two controllers with a lot
of cache. Hosts are connected to the storage system either via a SAN switch or directly,
depending on the configuration. The storage system is usually drastically oversubscri-
bed; there are many more machines connected to the disks than can possibly perform

Hardware Selection | 53

www.it-ebooks.info

http://www.it-ebooks.info/

I/O at once. Even with multiple controllers and multiple HBAs per host, only a small
number of machines can perform concurrent I/O. On top of the oversubscription of
the controller, these systems commonly configure disks in RAID groups, which means
all the problems mentioned earlier are an issue as well. This is counterintuitive in that
many administrators think of SANs as being extremely fast and in many ways, scalable.

Hadoop was specifically designed to run on a large number of completely standalone
commodity systems. Attempting to shoehorn it back into traditional enterprise storage
and virtualization systems only results in significantly higher cost for reduced perfor-
mance. Some percentage of readers will build clusters out of these components and
they will work, but they will not be optimal. Exotic deployments of Hadoop usually
end in exotic results, and not in a good way. You have been sufficiently warned.

Operating System Selection and Preparation
While most of Hadoop is written in Java, enough native code and Linux-isms are in its
surrounding infrastructure to make Linux the only production-quality option today. A
significant number of production clusters run on RedHat Enterprise Linux or its freely
available sister, CentOS. Ubuntu, SuSE Enterprise Linux, and Debian deployments also
exist in production and work perfectly well. Your choice of operating system may be
influenced by administration tools, hardware support, or commercial software sup-
port; the best choice is usually to minimize the variables and reduce risk by picking the
distribution with which you’re most comfortable.

Preparing the OS for Hadoop requires a number of steps, and repeating them on a large
number of machines is both time-consuming and error-prone. For this reason, it is
strongly advised that a software configuration management system be used. Puppet
and Chef are two open source tools that fit the bill. Extolling the virtues of these tools
is beyond the scope of what can be accomplished in this section, but there’s a breadth
of documentation for both to get you going. No matter what, find a configuration
management suite that makes sense to you and get familiar with it. It will save you
hours (or more) of tinkering and debugging down the road.

Deployment Layout
Hadoop uses a number of directories on the host filesystem. It’s important to under-
stand what each location is for and what the growth patterns are. Some directories, for
instance, are used for long-term block storage of HDFS data, and others contain tem-
porary data while MapReduce jobs are running. Each of these directories has different
security requirements as well. Later, in Chapter 5, we’ll see exactly how to configure
each of these locations, but for now, it’s enough to understand that they exist.

54 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://www.it-ebooks.info/

Hadoop home
This is the directory in which the Hadoop software is installed. Despite the name,
it is commonly not installed in a user’s home directory. This directory can be made
to be read only when configured correctly and usually lives in /usr/local, /opt, or
/usr when Hadoop is installed via packages.

Datanode data directories
One or more of these directories are used by the datanode to store HDFS block
data. The datanode assumes that each directory provided is a separate physical
device with independent spindles and round-robin blocks between disks. These
directories occupy the vast majority of disk space and act as the long-term storage
for data, and they are often put on the same devices as the tasktracker MapReduce
local directories.

Namenode directories
One or more of these directories are used by the namenode to store filesystem
metadata. The namenode assumes that each directory provided is a separate phys-
ical device and replicates all writes to each device synchronously to ensure data
availability in the event of disk failure. These directories will all require the same
amount of space and generally do not use more than 100 GB. One of these direc-
tories is usually an NFS mount, so data is written off the physical machine.

MapReduce local directories
One or more directories used by the tasktracker to store temporary data during a
MapReduce job. More spindles usually means better performance as MapReduce
tasks interfere with one another to a lesser degree. These directories store a mod-
erate amount, depending on what the MapReduce job is doing, and are often put
on the same devices as the datanode data directories.

Hadoop log directory
This is a common directory used by all daemons to store log data as well as job-
and task-level data. It’s normal for Hadoop to generate log data proportional to
cluster usage; more MapReduce jobs means more logs.

Hadoop pid directory
This is a directory used by all daemons to store pid files. This data is very small
and doesn’t grow.

Hadoop temp directory
Hadoop uses a temp directory for small, short-lived files it sometimes needs to
create. The temp directory is most notably used on the machines from which Map-
Reduce jobs are submitted and contains a copy of the JAR file that ultimately gets
sent to the jobtracker. This is /tmp/hadoop-<${user.name}> by default and many
administrators leave it there.

Operating System Selection and Preparation | 55

www.it-ebooks.info

http://www.it-ebooks.info/

Software
Hadoop has few external software package requirements. The most critical piece of
software required is the Java Development Kit (JDK). Internally, Hadoop uses many of
the features introduced with Java 6, such as generics and concurrency utilities. Hadoop
has surfaced bugs in every JDK on which it has been tested. To date, the Oracle
(formally Sun Microsystems) HotSpot JVM is, by far, the best performing, most stable
implementation available for Hadoop. That being said, the HotSpot VM has proven to
be a moving target from patch to patch. Patch versions 24, 26, and 31 have been thor-
oughly tested and work well for production. The Hadoop community keeps a list of
tested JVMs at http://wiki.apache.org/hadoop/HadoopJavaVersions where users can
post their experiences with various Java VMs and versions.

All machines in the cluster should run the exact same version of Java, down to the patch
level. Use of a 64-bit architecture and JDK is strongly encouraged because of the larger
heap sizes required by the namenode and jobtracker. To install the JDK, follow the
instructions for your OS at http://www.oracle.com/technetwork/java/javase/index
-137561.html.

If you choose to install Hadoop using Cloudera’s RPM packages, you
will need to install Java using the Oracle RPM as well. This is because
the CDH packages have a dependency on the Oracle RPM.

Beyond the JDK, there are a number of system services that will simplify the life of an
administrator. This is less about Hadoop specifically and applies to general system
maintenance, monitoring, and administration.

cron
Every system needs a functioning cron daemon to drive scheduled tasks. Cleaning
up temporary files, compressing old logs, and running configuration management
processes are a few examples of common cluster maintenance jobs.

ntp
The ability to correlate events on a cluster is necessary to diagnose and fix problems.
One of the common gotchas is to forget to synchronize clocks between machines.
Pick a node in the cluster—usually one of the master nodes—and make it a local
NTP server for all other nodes. Details on configuring NTP properly are available
at http://www.ntp.org/.

ssh
Hadoop itself does not rely on SSH,4 although it is incredibly useful for adminis-
tration and debugging. Depending on the environment, developers may also have
direct access to machines to view logs.

4. Some of the supporting shell scripts do use ssh to start and stop services on the cluster.

56 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://wiki.apache.org/hadoop/HadoopJavaVersions
http://www.oracle.com/technetwork/java/javase/index-137561.html
http://www.oracle.com/technetwork/java/javase/index-137561.html
http://www.ntp.org/
http://www.it-ebooks.info/

postfix/sendmail
While nothing in Hadoop sends email, it is sometimes useful to have an MTA that
supports outbound email only. This is useful for automated tasks running from
cron to be able to notify administrators of exceptional circumstances. Both postfix
and sendmail are fine for this purpose.

rsync
One of the most underrated tools, rsync allows administrators to copy files effi-
ciently locally and between hosts. If you’re not already familiar with rsync, learn it.

Hostnames, DNS, and Identification
Let’s just get this out of the way: when it comes to host identification, discovery, and
the treatment of hostnames, Hadoop is complicated and extremely picky. This topic is
responsible for a fair number of cries for support on the mailing lists and almost cer-
tainly an equal amount of lost sleep on the part of many who are new to Hadoop.

But before we get into the list of things that can go wrong, let’s first talk about how
Hadoop actually discovers and identifies hosts. As we discussed previously, Hadoop
worker processes such as the tasktracker and datanodes heartbeat into the jobtracker
and namenode (respectively) every few seconds. The first time this occurs, Hadoop
learns about the worker’s existence. Part of this heartbeat includes the identity of the
machine, either by hostname or by IP address. This identifier—again, either the host-
name or the IP address—is how Hadoop will refer to this machine. This means that
when an HDFS client, for instance, asks the namenode to open a file, the namenode
will return this identifier to the client as the proper way in which to contact the worker.
The exact implications of this are far-reaching; both the client and the worker now
must be able to directly communicate, but the client must also be able to resolve the
hostname and communicate with the worker using the identifier as it was reported to
the namenode. But what name does the datanode report to the namenode? That’s the
real question.

When the datanode starts up, it follows a rather convoluted process to discover the
name of the machine. There are a few different configuration parameters that can affect
the final decision. These parameters are covered in Chapter 5, but in its default con-
figuration the datanode executes the following series of steps:

1. Get the hostname of the machine, as returned by Java’s InetAddress.getLocal
Host().

2. Canonicalize the hostname by calling InetAddress#getCanonicalHostName().

3. Set this name internally and send it to either the namenode or the jobtracker.

This seems simple enough. The only real question is what getLocalHost() and getCa
nonicalHostName() do, under the hood. Unfortunately, this turns out to be platform-
specific and sensitive to the environment in a few ways. On Linux, with the HotSpot
JVM, getLocalHost() uses the POSIX, gethostname() which in Linux, uses the

Operating System Selection and Preparation | 57

www.it-ebooks.info

http://www.it-ebooks.info/

uname() syscall. This has absolutely no relationship to DNS or /etc/hosts, although the
name it returns is usually similar or even identical. The command hostname, for instance,
exclusively uses gethostname() and sethostname() whereas host and dig use
gethostbyname() and gethostbyaddr(). The former is how you interact with the
hostname as the kernel sees it, while the latter follows the normal Linux name resolution
path.

The implementation of getLocalHost() on Linux gets the hostname of the machine and
then immediately calls gethostbyname(). As a result, if the hostname doesn’t resolve to
an IP address, expect issues. Normally, this isn’t a concern because there’s usually at
least an entry in /etc/hosts as a result of the initial OS installation. Oddly enough, on
Mac OS X, if the hostname doesn’t resolve, it still returns the hostname and the IP
address active on the preferred network interface.

The second half of the equation is the implementation of getCanonicalHostName(),
which has an interesting quirk. Hostname canonicalization is the process of finding the
complete, official, hostname according to the resolution system, in this case, the host’s
resolver library. In lay terms, this usually means finding the fully qualified hostname.
Since getLocalHost() returns a nonqualified hostname—hadoop01 on our example
cluster—there’s some work to be done. According to the OpenJDK source code (which
may, in fact, differ from the Oracle HotSpot VM in subtle ways), getCanonicalHost
Name() calls the internal method InetAddress.getHostFromNameService(), which gets the
hostname by address via the OS resolver. What it does next is the quirk; it gets all IP
addresses for the given hostname, and checks to make sure the original IP address
appears in the list. If this fails for any reason, including a SecurityManager implemen-
tation that disallows resolution, the original IP address is returned as the canonical
name.

Using a simple Java5 program, let’s examine our test cluster to see all of this in action
(see Example 4-1).

Example 4-1. Java utility to display hostname information

import java.net.InetAddress;
import java.net.UnknownHostException;

public class dns {

 public static void main(String[] args) throws UnknownHostException {
 InetAddress addr = InetAddress.getLocalHost();

 System.out.println(
 String.format(
 "IP:%s hostname:%s canonicalName:%s",
 addr.getHostAddress(), // The "default" IP address
 addr.getHostName(), // The hostname (from gethostname())
 addr.getCanonicalHostName() // The canonicalized hostname (from resolver)

5. This code can be compiled and run using javac dns.java followed by java dns.

58 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://www.it-ebooks.info/

)
);
 }

}

esammer@hadoop01 ~]$ hostname
hadoop01
[esammer@hadoop01 ~]$ java dns
IP:10.1.1.160 hostname:hadoop01 canonicalName:hadoop01.sf.cloudera.com

We can see that the hostname of the machine becomes fully qualified, as we expected.
If we change the hostname of the machine to something that doesn’t resolve, things fail.

[esammer@hadoop01 ~]$ sudo hostname bananas
[sudo] password for esammer:
[esammer@hadoop01 ~]$ hostname
bananas
[esammer@hadoop01 ~]$ java dns
Exception in thread "main" java.net.UnknownHostException: bananas: bananas
 at java.net.InetAddress.getLocalHost(InetAddress.java:1354)
 at dns.main(dns.java:7)

Adding an entry to /etc/hosts for bananas fixes the problem, but the canonical name is
the same.

[esammer@hadoop01 ~]$ cat /etc/hosts
127.0.0.1 localhost.localdomain localhost

10.1.1.160 hadoop01.sf.cloudera.com hadoop01 bananas
10.1.1.161 hadoop02.sf.cloudera.com hadoop02
Other hosts...
[esammer@hadoop01 ~]$ java dns
IP:10.1.1.160 hostname:bananas canonicalName:hadoop01.sf.cloudera.com

Moving bananas to the “canonical name” position in the hosts file changes the result.6

[esammer@hadoop01 ~]$ java dns
IP:10.1.1.160 hostname:bananas canonicalName:bananas
[esammer@hadoop01 ~]$ cat /etc/hosts
127.0.0.1 localhost.localdomain localhost

10.1.1.160 bananas hadoop01.sf.cloudera.com hadoop01
10.1.1.161 hadoop02.sf.cloudera.com hadoop02
Other hosts...

This is all well and good, but what could really go wrong? After all, hostnames are just
hostnames. Unfortunately, it’s not that simple. There are a few pathological cases where
seemingly benign (and worse, common) configuration leads to very unexpected results.

One of the most common issues is that the machine believes its name to be 127.0.01.
Worse, some versions of CentOS and RHEL configure things this way by default! This
is extremely dangerous because datanodes communicate to the namenode that they’re

6. See man 5 hosts for details on the difference between fields two and three in the hosts file.

Operating System Selection and Preparation | 59

www.it-ebooks.info

http://www.it-ebooks.info/

alive and well, but they report their IP address to be 127.0.0.1 or localhost, which, in
turn, is given to clients attempting to read or write data to the cluster. The clients are
told to write to the datanode at 127.0.0.1—in other words, themselves—and they con-
stantly fail. This goes down as one of the worst configuration mistakes that can occur
because neither traditional monitoring tools nor the untrained administrator will notice
this until it’s far too late. Even then, it still may not be clear why the machine reports
itself this way.

[esammer@hadoop01 ~]$ cat /etc/hosts
127.0.0.1 localhost.localdomain localhost bananas

10.1.1.160 hadoop01.sf.cloudera.com hadoop01
10.1.1.161 hadoop02.sf.cloudera.com hadoop02
Other hosts...
[esammer@hadoop01 ~]$ java dns
IP:127.0.0.1 hostname:bananas canonicalName:localhost.localdomain

Users, Groups, and Privileges
Hadoop is, in many ways, an arbitrary code execution engine. Users submit code in
the form of MapReduce jobs to the cluster, which is instantiated and executed on
worker nodes within the cluster. To mitigate obvious attack vectors and protect po-
tentially sensitive data, it’s advisable to run HDFS daemons as one user and MapReduce
daemons as another. MapReduce jobs, in turn, execute either as the same user as the
tasktracker daemon or as the user that submitted the job (see Table 4-3). The latter
option is only available when a cluster is operating in so-called secure mode.

Table 4-3. Hadoop daemon users

Process User

Namenode hdfs

Secondary namenode hdfs

Datanode hdfs

Jobtracker mapred

Tasktracker mapred

Child tasks mapred a
a In secure mode, the user that submitted the job.

Historically, it was common to run all daemons as a single user, usually named
hadoop. This was prior to support for secure operation being a first class deployment
mode and suffered from potential data exposure issues. For example, if a MapReduce
task is running as user hadoop, that process can simply open raw blocks on the worker’s
Linux filesystem, bypassing all application-level authorization checks. By running child
tasks as user mapred the standard filesystem access controls can be used to restrict direct
access to datanode block data. For more information about user identity, authentica-
tion, and authorization in MapReduce see Chapter 6.

60 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://www.it-ebooks.info/

By default, the CDH Hadoop RPM and Deb packages will create these users if they
don’t already exist, and the init scripts will start the daemons as the correct users. Users
of Apache Hadoop can write similar scripts or use an external system to ensure daemons
are started as the correct users.

Each Hadoop daemon consumes various system resources, as you can guess. Linux
supports, via Pluggable Authentication Modules (PAM) system, the ability to control
resources such as file descriptors and virtual memory at the user level. These resource
limits are defined in /etc/security/limits.conf or as fragment files in the /etc/security/lim-
its.d directory, and affect all new logins. The format of the file isn’t hard to understand,
as shown in Example 4-2.

Example 4-2. Sample limits.conf for Hadoop

Allow users hdfs, mapred, and hbase to open 32k files. The
type '-' means both soft and hard limits.
#
See 'man 5 limits.conf' for details.

user type resource value

hdfs - nofile 32768
mapred - nofile 32768
hbase - nofile 32768

Each daemon uses different reserved areas of the local filesystem to store various types
of data, as shown in Table 4-4. Chapter 5 covers how to define the directories used by
each daemon.

Table 4-4. Hadoop directories and permissions

Daemon Sample path(s) Configuration pa-
rameter

Owner:Group Permissions

Namenode /data/1/dfs/nn,/
data/2/dfs/nn,/data/
3/dfs/nn

dfs.name.dir hdfs:hadoop 0700

Secondary namenode /data/1/dfs/snn fs.check
point.dir

hdfs:hadoop 0700

Datanode /data/1/dfs/dn,/
data/2/dfs/dn,/data/
3/dfs/dn,/data/4/dfs/
dn

dfs.data
node.dir

hdfs:hadoop 0700

Tasktracker /data/1/mapred/lo-
cal,/data/2/mapred/
local,/data/3/
mapred/local,/data/
4/mapred/local

mapred.local.d
ir

mapred:hadoop 0770

Operating System Selection and Preparation | 61

www.it-ebooks.info

http://www.it-ebooks.info/

Daemon Sample path(s) Configuration pa-
rameter

Owner:Group Permissions

Jobtracker /data/1/mapred/local mapred.local.d
ir

mapred:hadoop 0700

All /var/log/hadoop $HADOOP_LOG_DI
R

root:hadoop 0775 a

 /tmp/hadoop-
user.name

hadoop.tmp.dir root:root 1777

a Optionally 0770 in highly restricted environments.

These directories should be created with the proper permissions prior to deploying
Hadoop. Users of Puppet or Chef usually create a Hadoop manifest or recipe, respec-
tively, that ensures proper directory creation during host provisioning. Note that in-
correct permissions or ownership of directories can result in daemons that don’t start,
ignored devices, or accidental exposure of sensitive data. When operating in secure
mode, some of the daemons validate permissions on critical directories and will refuse
to start if the environment is incorrectly configured.

Kernel Tuning
There are a few kernel parameters that are of special interest when deploying Hadoop.
Since production Hadoop clusters always have dedicated hardware, it makes sense to
tune the OS based on what we know about how Hadoop works. Kernel parameters
should be configured in /etc/sysctl.conf so that settings survive reboots.

vm.swappiness
The kernel parameter vm.swappiness controls the kernel’s tendency to swap application
data from memory to disk, in contrast to discarding filesystem cache. The valid range
for vm.swappiness is 0 to 100 where higher values indicate that the kernel should be
more aggressive in swapping application data to disk, and lower values defer this be-
havior, instead forcing filesystem buffers to be discarded. Swapping Hadoop daemon
data to disk can cause operations to timeout and potentially fail if the disk is performing
other I/O operations. This is especially dangerous for HBase as Region Servers must
maintain communication with ZooKeeper lest they be marked as failed. To avoid this,
vm.swappiness should be set to 0 (zero) to instruct the kernel to never swap application
data, if there is an option. Most Linux distributions ship with vm.swappiness set to 60
or even as high as 80.

vm.overcommit_memory
Processes commonly allocate memory by calling the function malloc(). The kernel
decides if enough RAM is available and either grants or denies the allocation request.

62 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://www.it-ebooks.info/

Linux (and a few other Unix variants) support the ability to overcommit memory; that
is, to permit more memory to be allocated than is available in physical RAM plus swap.
This is scary, but sometimes it is necessary since applications commonly allocate mem-
ory for “worst case” scenarios but never use it.

There are three possible settings for vm.overcommit_memory.

0 (zero)
Check if enough memory is available and, if so, allow the allocation. If there isn’t
enough memory, deny the request and return an error to the application.

1 (one)
Permit memory allocation in excess of physical RAM plus swap, as defined by
vm.overcommit_ratio. The vm.overcommit_ratio parameter is a percentage added
to the amount of RAM when deciding how much the kernel can overcommit. For
instance, a vm.overcommit_ratio of 50 and 1 GB of RAM would mean the kernel
would permit up to 1.5 GB, plus swap, of memory to be allocated before a request
failed.

2 (two)
The kernel’s equivalent of “all bets are off,” a setting of 2 tells the kernel to always
return success to an application’s request for memory. This is absolutely as weird
and scary as it sounds.

When a process forks, or calls the fork() function, its entire page table is cloned. In
other words, the child process has a complete copy of the parent’s memory space, which
requires, as you’d expect, twice the amount of RAM. If that child’s intention is to
immediately call exec() (which replaces one process with another) the act of cloning
the parent’s memory is a waste of time. Because this pattern is so common, the
vfork() function was created, which unlike fork(), does not clone the parent memory,
instead blocking it until the child either calls exec() or exits. The problem is that the
HotSpot JVM developers implemented Java’s fork operation using fork() rather than
vfork().

So why does this matter to Hadoop? Hadoop Streaming—a library that allows Map-
Reduce jobs to be written in any language that can read from standard in and write to
standard out—works by forking the user’s code as a child process and piping data
through it. This means that not only do we need to account for the memory the Java
child task uses, but also that when it forks, for a moment in time before it execs, it uses
twice the amount of memory we’d expect it to. For this reason, it is sometimes necessary
to set vm.overcommit_memory to the value 1 (one) and adjust vm.overcommit_ratio
accordingly.

Disk Configuration
Disk configuration and performance is extremely important to Hadoop. Since many
kinds of MapReduce jobs are I/O-bound, an underperforming or poorly configured

Disk Configuration | 63

www.it-ebooks.info

http://www.it-ebooks.info/

disk can drastically reduce overall job performance. Datanodes store block data on top
of a traditional filesystem rather than on raw devices. This means all of the attributes
of the filesystem affect HDFS and MapReduce, for better or worse.

Choosing a Filesystem
Today Hadoop primarily runs on Linux: as a result we’ll focus on common Linux
filesystems. To be sure, Hadoop can run on more exotic filesystems such as those from
commercial vendors, but this usually isn’t cost-effective. Remember that Hadoop is
designed to be not only low-cost, but also modest in its requirements on the hosts on
which it runs. By far, the most common filesystems used in production clusters are
ext3, ext4, and xfs.

As an aside, the Linux Logical Volume Manager (LVM) should never be used for Ha-
doop data disks. Unfortunately, this is the default for CentOS and RHEL when using
automatic disk allocation during installation. There is obviously a performance hit
when going through an additional layer such as LVM between the filesystem and the
device, but worse is the fact that LVM allows one to concatenate devices into larger
devices. If you’re not careful during installation, you may find that all of your data disks
have been combined into a single large device without any protection against loss of a
single disk. The dead giveaway that you’ve been bitten by this unfortunate configura-
tion mishap is that your device name shows up as /dev/vg* or something other than
/dev/sd*.

The commands given here will format disks. Formatting a disk is a de-
structive operation and will destroy any existing data on the disk. Do
not format a disk that contains data you need!

ext3

The third extended filesystem, or ext3, is an enhanced version of ext2. The most notable
feature of ext3 is support for journaling, which records changes in a journal or log prior
to modifying the actual data structures that make up the filesystem. Ext3 has been
included in Linux since kernel version 2.4.15 and has significant production burn-in.
It supports files up to 2 TB and a max filesystem size of 16 TB when configured with a
4 KB block size. Note that the maximum filesystem size is less of a concern with Hadoop
because data is written across many machines and many disks in the cluster. Multiple
journal levels are supported, although ordered mode, where the journal records met-
adata changes only, is the most common. If you’re not sure what filesystem to use, or
you’re extremely risk-averse, ext3 is for you.

When formatting devices for ext3, the following options are worth specifying:

mkfs -t ext3 -j -m 1 -O sparse_super,dir_index /dev/sdXN

64 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://www.it-ebooks.info/

The option -t ext3 simply tells mkfs to create an ext3 filesystem while -j enables the
journal. The -m1 option is a hidden gem and sets the percentage of reserved blocks for
the superuser to 1% rather than 5%. Since no root processes should be touching data
disks, this leaves us with an extra 4% of usable disk space. With 2 TB disks, that’s up
to 82 GB! Additional options to the filesystem are specified by the -O option. Admit-
tedly, the two options shown—sparse_super, which creates fewer super-block back-
ups, and dir_index, which uses b-tree indexes for directory trees for faster lookup of
files in large directories—are almost certainly the defaults on your Linux distro of
choice. Of course, /dev/sdXN specifies the device to format, where X is the drive and N
is the partition number.

ext4

Ext4 is the successor to ext3; it was released as of Linux 2.6.28 and contains some
desirable improvements. Specifically, ext4 is extent-based, which improves sequential
performance by storing contiguous blocks together in a larger unit of storage. This is
especially interesting for Hadoop, which is primarily interested in reading and writing
data in larger blocks. Another feature of ext4 is journal checksum calculation; a feature
that improves data recoverability in the case of failure during a write. Newer Linux
distributions such as RedHat Enterprise Linux 6 (RHEL6) will use ext4 as the default
filesystem unless configured otherwise.

All of this sounds great, but ext4 has a major drawback: burn-in time. Only now is ext4
starting to see significant deployment in production systems. This can be disconcerting
to those that are risk-averse. The following format command is similar to that of ext3,
except we add the extent argument to the -O option to enable the use of extent-based
allocation:

mkfs -t ext4 -m 1 -O dir_index,extent,sparse_super /dev/sdXN

xfs

XFS, a filesystem created by SGI, has a number of unique features. Like ext3 and ext4,
it’s a journaling filesystem, but the way data is organized on disk is very different.
Similar to ext4, allocation is extent-based, but its extents are within allocation groups,
each of which is responsible for maintaining its own inode table and space. This model
allows concurrent operations in a way that ext3 and 4 cannot, because multiple pro-
cesses can modify data in each allocation group without conflict. Its support for high
concurrency makes xfs very appealing for systems such as relational databases that
perform many parallel, but short-lived, operations.

mkfs -t xfs /dev/sdXN

There are no critical options to creating xfs filesystems for Hadoop.

Disk Configuration | 65

www.it-ebooks.info

http://www.it-ebooks.info/

Mount Options
After filesystems have been formatted, the next step is to add an entry for each newly
formatted filesystem to the system's /etc/fstab file, as shown in Example 4-3. The reason
this somewhat mundane task is called out is because there’s an important optimization
to be had: disabling file access time. Most filesystems support the notion of keeping
track of the access time of both files and directories. For desktops, this is a useful feature;
it’s easy to figure out what files you’ve most recently viewed as well as modified. This
feature isn’t particularly useful in the context of Hadoop. Users of HDFS are, in many
cases, unaware of the block boundaries of files, so the fact that block two of file foo was
accessed last week is of little value. The real problem with maintaining access time (or
atime as it’s commonly called) is that every time a file is read, the metadata needs to be
updated. That is, for each read, there’s also a mandatory write. This is relatively ex-
pensive at scale and can negatively impact the overall performance of Hadoop, or any
other system, really. When mounting data partitions, it’s best to disable both file atime
and directory atime.

Example 4-3. Sample /etc/fstab file

LABEL=/ / ext3 noatime,nodiratime 1 1
LABEL=/data/1 /data/1 ext3 noatime,nodiratime 1 2
LABEL=/data/2 /data/2 ext3 noatime,nodiratime 1 2
LABEL=/data/3 /data/3 ext3 noatime,nodiratime 1 2
LABEL=/data/4 /data/4 ext3 noatime,nodiratime 1 2
tmpfs /dev/shm tmpfs defaults 0 0
devpts /dev/pts devpts gid=5,mode=620 0 0
sysfs /sys sysfs defaults 0 0
proc /proc proc defaults 0 0
LABEL=SWAP-sda2 swap swap defaults 0 0

Network Design
Network design and architecture is a complex, nuanced topic on which many books
have been written. This is absolutely not meant to be a substitute for a complete un-
derstanding of such a deep subject. Instead, the goal is to highlight what elements of
network design are crucial from the perspective of Hadoop deployment and perfor-
mance.

The following sections assume you’re already familiar with basic networking concepts
such as the OSI model, Ethernet standards such as 1- (1GbE) and 10-gigabit (10GbE),
and the associated media types. Cursory knowledge of advanced topics such as routing
theory and at least one protocol such as IS-IS, OSPF, or BGP is helpful in getting the
most out of “Spine fabric” on page 72. In the interest of simplicity, we don’t cover
bonded hosts or switch redundancy where it’s obviously desirable. This isn’t because
it’s not important, but because how you accomplish that tends to get into switch-
specific features and vendor-supported options.

66 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/IS-IS
http://en.wikipedia.org/wiki/OSPF
http://en.wikipedia.org/wiki/BGP
http://www.it-ebooks.info/

Network Usage in Hadoop: A Review
Hadoop was developed to exist and thrive in real-world network topologies. It doesn’t
require any specialized hardware, nor does it employ exotic network protocols. It will
run equally well in both flat Layer 2 networks or routed Layer 3 environments. While
it does attempt to minimize the movement of data around the network when running
MapReduce jobs, there are times when both HDFS and MapReduce generate consid-
erable traffic. Rack topology information is used to make reasonable decisions about
data block placement and to assist in task scheduling, but it helps to understand the
traffic profiles exhibited by the software when planning your cluster network.

HDFS

In Chapter 2, we covered the nuts and bolts of how HDFS works and why. Taking a
step back and looking at the system from the perspective of the network, there are three
primary forms of traffic: cluster housekeeping traffic such as datanode block reports
and heartbeats to the namenode, client metadata operations with the namenode, and
block data transfer. Basic heartbeats and administrative commands are infrequent and
only transfer small amounts of data in remote procedure calls. Only in extremely large
cluster deployments—on the order of thousands of machines—does this traffic even
become noticeable.

Most administrators will instead focus on dealing with the rate of data being read from,
or written to, HDFS by client applications. Remember, when clients that execute on a
datanode where the block data is stored perform read operations, the data is read from
the local device, and when writing data, they write the first replica to the local device.
This reduces a significant amount of network data transfer. Clients that do not run on
a datanode or that read more than a single block of data will cause data to be transferred
across the network. Of course, with a traditional NAS device, for instance, all data
moves across the network, so anything HDFS can do to mitigate this is already an
improvement, but it’s nothing to scoff at. In fact, writing data from a noncollocated
client causes the data to be passed over the network three times, two of which pass over
the core switch in a traditional tree network topology. This replication traffic moves in
an East/West pattern rather than the more common client/server-oriented North/
South. Significant East/West traffic is one of the ways Hadoop is different from many
other traditional systems.

Network Design | 67

www.it-ebooks.info

http://www.it-ebooks.info/

North/South and East/West Distinctions
If you’re unfamiliar with the use of North/South and East/West in the context of net-
work traffic, do not be afraid. This simply refers to the primary directional flow of traffic
between two hosts on a network. Picture the network diagram of a typical tree network
(see Figure 4-3). Traffic from clients typically flows from the top (or North) of the
diagram to the bottom (South) and back (or vice versa—it doesn’t really matter). A
good example of this is hundreds or thousands of users of a web application; requests
initiate from outside the network and flow in through the core, to the web application
server, and back out the way they came. The web application servers, for instance, never
communicate with one another (horizontally or East/West). Conversely, both HDFS
and MapReduce exhibit strong East/West, or full node-to-node communication pat-
terns. Some network topologies are better suited to North/South or East/West traffic
patterns, as we’ll see in a bit.

Beyond normal client interaction with HDFS, failures can also generate quite a bit of
traffic. Much simpler to visualize, consider what happens when a datanode that con-
tains 24 TB of block data fails. The resultant replication traffic matches the amount of
data contained on the datanode when it failed.

MapReduce

It’s no surprise that the MapReduce cluster membership and heartbeat infrastructure
matches that of HDFS. Tasktrackers regularly heartbeat small bits of information to
the jobtracker to indicate they’re alive. Again, this isn’t a source of pain for most ad-
ministrators, save for the extreme scale cases. Client applications also do not commu-
nicate directly with tasktrackers, instead performing most operations against the job-
tracker and HDFS. During job submission, the jobtracker communicates with the
namenode, but also in the form of small RPC requests. The true bear of MapReduce is
the tasktracker traffic during the shuffle phase of a MapReduce job.

As map tasks begin to complete and reducers are started, each reducer must fetch the
map output data for its partition from each tasktracker. Performed by HTTP, this re-
sults in a full mesh of communication; each reducer (usually) must copy some amount
of data from every other tasktracker in the cluster. Additionally, each reducer is per-
mitted a certain number of concurrent fetches. This shuffle phase accounts for a rather
significant amount of East/West traffic within the cluster, although it varies in size from
job to job. A data processing job, for example, that transforms every record in a dataset
will typically transform records in map tasks in parallel. The result of this tends to be
a different record of roughly equal size that must be shuffled, passed through the reduce
phase, and written back out to HDFS in its new form. A job that transforms an input
dataset of 1 million 100 KB records (roughly 95 GB) to a dataset of one million 82 KB
records (around 78 GB) will shuffle at least 78 GB over the network for that job alone,
not to mention the output from the reduce phase that will be replicated when written
to HDFS.

68 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://www.it-ebooks.info/

Remember that active clusters run many jobs at once and typically must continue to
take in new data being written to HDFS by ingestion infrastructure. In case it’s not
clear, that’s a lot of data.

1 Gb versus 10 Gb Networks
Frequently, when discussing Hadoop networking, users will ask if they should deploy
1 Gb or 10 Gb network infrastructure. Hadoop does not require one or the other;
however, it can benefit from the additional bandwidth and lower latency of 10 Gb
connectivity. So the question really becomes one of whether the benefits outweigh the
cost. It’s hard to truly evaluate cost without additional context. Vendor selection, net-
work size, media, and phase of the moon all seem to be part of the pricing equation.
You have to consider the cost differential of the switches, the host adapters (as 10 GbE
LAN on motherboard is still not yet pervasive), optics, and even cabling, to decide if
10 Gb networking is feasible. On the other hand, plenty of organizations have simply
made the jump and declared that all new infrastructure must be 10 Gb, which is also
fine. Estimates, at the time of publication, are that a typical 10 Gb top of rack switch
is roughly three times more expensive than its 1 Gb counterpart, port for port.

Those that primarily run ETL-style or other high input to output data ratio MapReduce
jobs may prefer the additional bandwidth of a 10 Gb network. Analytic MapReduce
jobs—those that primarily count or aggregate numbers—perform far less network data
transfer during the shuffle phase, and may not benefit at all from such an investment.
For space- or power-constrained environments, some choose to purchase slightly beef-
ier hosts with more storage that, in turn, require greater network bandwidth in order
to take full advantage of the hardware. The latency advantages of 10 Gb may also benefit
those that wish to run HBase to serve low-latency, interactive applications. Finally, if
you find yourself considering bonding more than two 1 Gb interfaces, you should al-
most certainly look to 10 Gb as, at that point, the port-for-port cost starts to become
equivalent.

Typical Network Topologies
It’s impossible to fully describe all possible network topologies here. Instead, we focus
on two: a common tree, and a spine/leaf fabric that is gaining popularity for applications
with strong East/West traffic patterns.

Traditional tree

By far, the N-tiered tree network (see Figure 4-3) is the predominant architecture de-
ployed in data centers today. A tree may have multiple tiers, each of which brings
together (or aggregates) the branches of another tier. Hosts are connected to leaf or
access switches in a tree, which are then connected via one or more uplinks to the next
tier. The number of tiers required to build a network depends on the total number of
hosts that need to be supported. Using a switch with 48 1GbE and four 10GbE port

Network Design | 69

www.it-ebooks.info

http://www.it-ebooks.info/

switches as an access switch, and a 48-port 10GbE switch as a distribution switch, it’s
possible to support up to 576 hosts (because each access switch uses 4-ports of the 48-
port distribution switch).

Notice that the sum of the four 10GbE uplinks from each distribution switch can’t
actually support the full bandwidth of the 48 1GbE ports. This is referred to as over-
subscription of the bandwidth. In simpler terms, it’s not possible for all 48 hosts to
communicate at the full, advertised rate of the port to which they are connected. Over-
subscription is commonly expressed as a ratio of the amount of desired bandwidth
required versus bandwidth available. In our example, the 48 1GbE ports can theoret-
ically carry 48 Gb of traffic, but the four 10GbE ports only support 40 Gb. Dividing
the desired bandwidth (48) by the available bandwidth (40) yields an oversubscription
ratio of 1.2:1. It’s very common for some amount of oversubscription to occur at the
uplink of one tier to the next in a tree. This is one of the primary reasons why Hadoop
tries to keep network activity confined to a single rack, or switch, really.

What happens, though, when we run out of ports at the distribution switch? At some
point, it becomes either cost-prohibitive or simply impossible to buy switches with
more ports. In a tree, the answer is to add another tier of aggregation. The problem
with this is that each time you add a tier, you increase the number of switches between
some nodes and others. Worse, the amount of oversubscription is compounded with
each tier in the tree. Consider what happens if we extend our tree network from earlier
beyond 576 hosts. To increase our port density any further we must create a third tier
(see Figure 4-4). The problem now becomes the oversubscription between tiers two
and three. With 576 Gb of traffic at each tier two switch, we won’t be able to maintain
the 1.2:1 oversubscription rate; that would require roughly 48 10GbE or 12 40GbE
uplink ports per distribution switch. With each tier that is added, oversubscription
worsens, and creates wildly different bandwidth availability between branches of the
tree. As we’ve seen, Hadoop does its best to reduce interswitch communication during
some operations, but others cannot be avoided, leading to frequent, and sometimes
severe, contention at these oversubscribed choke points in the network. Ultimately,
most network administrators come to the conclusion that a modular chassis switch

Figure 4-3. Two-tier tree network, 576 hosts

70 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://www.it-ebooks.info/

that supports high port density is the answer to this problem. Beefy modular switches
such as the Cisco Nexus 7000 series are not unusual to find in large tree networks
supporting Hadoop clusters, but they can be expensive and can simply push the prob-
lem out until you run out of ports again. For large clusters, this is not always sufficient.

Figure 4-4. Three-tier tree network, 1,152 hosts (oversubscribed)

If we look instead at the North/South traffic support, a tree makes a lot of sense. Traffic
enters via the root of the tree and is, by definition, limited to the capacity of the root
itself. This traffic never traverses more than one branch and is far simpler to handle as
a result.

It’s worth noting that cluster data ingress and egress should be nearest to the root of a
tree network. This prevents branch monopolization and unbalanced traffic patterns
that negatively impact some portions of the network and not others. Placing the border
of the cluster at the cluster’s core switch makes this traffic equidistant to all nodes in
the tree and amortizes the bandwidth cost over all branches equally.

A tree network works for small and midsize networks that fit within two tiers with
minimal oversubscription. Typical access switches for a 1GbE network tend to be 48
ports with four 10GbE uplinks to a distribution layer. The distribution switch size
depends on how many nodes need to be supported, but 48-port 10GbE switches are
common. If you are tacking Hadoop onto an existing tree, bring the cluster’s distribu-
tion layer in nearest to that of ETL, process orchestration, database, or other systems
with which you plan to exchange data. Do not, under any circumstances, place low-
latency services on the cluster distribution switch. Hadoop tends to monopolize shared
resources such as buffers, and can (and will) create problems for other hosts.

Network Design | 71

www.it-ebooks.info

http://www.cisco.com/en/US/products/ps9402/index.html
http://www.it-ebooks.info/

Spine fabric

Over the past few years, general purpose virtualized infrastructure and large-scale data
processing clusters have grown in popularity. These types of systems have very different
traffic patterns from traditional systems in that they both require significantly greater
East/West bandwidth. We’ve already discussed Hadoop’s traffic patterns, but in many
ways it’s similar to that of a virtualized environment. In a true virtualized environment,
applications relinquish explicit control over physical placement in exchange for flexi-
bility and dynamism. Implicitly, this means that two applications that may need high-
bandwidth communication with each other could be placed on arbitrary hosts, and by
extension, switches, in the network. While it’s true that some virtualization systems
support the notion of locality groups that attempt to place related virtual machines
“near” one another, it’s usually not guaranteed, nor is it possible to ensure you’re not
placed next to another high-traffic application. A new type of network design is required
to support this new breed of systems.

Enter the scale-out spine fabric, seen in Figure 4-5. As its name implies, a fabric looks
more like a tightly weaved mesh with as close to equal distance between any two hosts
as possible. Hosts are connected to leaf switches, just as in the tree topology; however,
each leaf has one or more uplinks to every switch in the second tier, called the spine.
A routing protocol such as IS-IS, OSPF, or EIGRP is run with equal cost multipath
(ECMP) routes so that traffic has multiple path options and takes the shortest path
between two hosts. If each leaf has an uplink to each spine switch, every host (that isn’t
on the same leaf) is always exactly three hops away. This equidistant, uniform band-
width configuration is perfect for applications with strong East/West traffic patterns.
Using the same example as earlier, converting our two distribution switches to a spine,
it’s possible to support 24-leaf switches or 1,152 hosts at the same 1.2:1 oversubscrip-
tion rate.

Figure 4-5. Two-switch spine fabric, 1,152 hosts

In a fabric, it’s not uncommon to use more and more ports on each leaf to support a
wider spine for greater port density. To give you an idea of how this scales, four

72 | Chapter 4: Planning a Hadoop Cluster

www.it-ebooks.info

http://www.it-ebooks.info/

48-port 10GbE spine switches will support forty-eight 48-port 1GbE leaf switches at
the same 1.2:1 oversubscription rate for a total of 2,304 1GbE ports, as shown in
Figure 4-6. That’s not a typo. Each leaf switch has one uplink to each of the four spine
switches with 48 1GbE ports for host connectivity. It’s safe to reduce the number of
uplinks from leaf to spine because ECMP routing says we can simply take a different
path to the same place; the bandwidth isn’t gone, just spread out. Scaling out further
is possible by increasing the number of spine switches and uplinks per leaf. For leaf
switches with only four 10GbE ports things get a little complicated, but it’s possible to
buy switches with two 40GbE QSFP+ ports to overcome this. Using a breakout cable,
it’s possible to use each 40GbE QSFP+ port as four 10GbE ports for up to eight uplinks.
Beyond eight spine switches (which, by the way, is 96 leaf switches or 4,608 1GbE
ports), it’s usually necessary to go to 10GbE leaf switches to support additional uplinks.
We then start taking away ports for hosts on each leaf and using them for uplinks, but
it still allows larger and larger networks. Some Hadoop community members have
written, at length, about the port density, bandwidth, cost, and power concerns when
building large-scale fabrics; Brad Hedlund has an amazing blog where he regularly talks
about building large-scale networks for Hadoop and OpenStack deployments.

Figure 4-6. Four-switch spine fabric, 2,304 hosts

Cluster access in a spine fabric can be placed on a dedicated leaf. Since all leaves have
equidistant access to all others via the spine, bandwidth is not sacrificed. Also note-
worthy is that the spine fabric implicitly supports redundancy because of the use of
ECMP routing. It’s possible to lose up N – 1 spine switches where N is the number of
uplinks per leaf, although bandwidth is obviously reduced with each loss as well.

Network Design | 73

www.it-ebooks.info

http://bradhedlund.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Installation and Configuration

Installing Hadoop
Once you’ve prepped the environment, selected the version and distribution of Ha-
doop, and decided which daemons will run where, you’re ready to install Hadoop. The
act of installing Hadoop is relatively simple once the machines have been properly
prepared. There are almost endless ways of installing Hadoop. The goal here, though,
is to define some best practices for deployment to avoid the most common mistakes
and pain points.

In all deployment scenarios, there are a few common tasks. Hadoop is always down-
loaded and installed in a select location on the filesystem. For tarball-based installs,
this leaves quite a bit of flexibility but also an equal amount of ambiguity. Tarball
installs are also complicated because the administrator needs to perform extra steps to
create system users, relocate log and pid file directories, set permissions appropriately,
and so forth. If you’re not sure which method of install to perform, start with RPM or
Deb packages. It will save you from making common mistakes and keep you in line
with best practices developed by the Hadoop community over time.

Do I Need Root Access to Install Hadoop?
Sometimes, due to organizational boundaries or security restrictions, administrators
responsible for deploying Hadoop do not have Linux root user privileges. While Ha-
doop itself does not necessarily require root privileges, installation—at least according
to best practices—does require that some actions be performed as a superuser. Whether
one can get away without requiring root access depends on the method of deployment,
the features of Hadoop that are to be enabled, and how much planning can be done
beforehand. It is, however, possible to divide the tasks that require superuser privileges
from those that do not. Expect that, for a production deployment, root privileges will
be required during installation and for specific maintenance operations (covered later
in Chapter 8).

If you truly wish to install and configure Hadoop as a nonroot user, you can follow the
tarball installation process and simply change the owner to another, nonprivileged user

75

www.it-ebooks.info

http://www.it-ebooks.info/

rather than root. Note that running Hadoop in secure mode does require root privileges
for various reasons, one being because the daemons must bind to privileged ports. Be
careful that in your quest to avoid root you do not inadvertently make your cluster
less secure.

Always remember that requiring root during installation does not equate to running as
root (which Hadoop does not do).

Apache Hadoop
Apache Hadoop is available for download directly from the Apache Software Founda-
tion (ASF) at http://hadoop.apache.org and is available as tarballs, RPMs, and Debs.
While tarball installation offers the greatest amount of flexibility, it is also the most
complicated for a production deployment. Administrators with extremely specific re-
quirements about where software is installed and how will prefer to use tarball instal-
lation. The RPM and Deb package format artifacts greatly simplify the process of in-
stallation in that files are placed in predictable locations in the filesystem according to
the Filesystem Hierarchy Standard (FHS). To simplify things, we’ll assume Apache
Hadoop version 1.0.0 is being installed in the examples that follow.

Tarball installation

To install Apache Hadoop using tarballs:

1. Download Apache Hadoop.

The Apache Software Foundation uses a mirroring system which presents a list of
locations from which one may download a specific release. Unfortunately, the
Apache Hadoop project site is confusing. Visiting the site reveals no obvious
download links. Instead, you’ll find three subprojects called Common, HDFS, and
MapReduce shown as tabs along the top of the page.

Without delving too much into the history of the project, at some point Hadoop
was divided into three components: Common, HDFS, and MapReduce. The Com-
mon subproject was to contain code shared by both HDFS and MapReduce, while
HDFS and MapReduce would be home to their respective components. The idea
here was that Hadoop could, in theory, support other compute and storage layers.
While this is true, it made development of Hadoop itself extremely difficult and
ultimately there was still only a single software artifact that came out of the project
that contained the cumulative source code of all three components. This artifact,
for lack of a better way to do deal with the situation, is now released under the
Common subproject.

Clicking on the “Common” tab and then on the “Releases” link leads to the down-
load page. Scrolling down, you’ll find a link labeled “Download a release now.”
This leads to the list of mirrors with a recommended mirror based on your
geographic location at the top of the page. If you’d rather simply bookmark the

76 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://hadoop.apache.org
http://www.linuxfoundation.org/collaborate/workgroups/lsb/fhs
http://www.it-ebooks.info/

location for downloads without being stuck to a specific mirror, the proper URL
is http://www.apache.org/dyn/closer.cgi/hadoop/common/. In the following exam-
ples, we use selected-mirror to indicate the location of the software on one of the
mirror sites:

[esammer@hadoop01 hadoop]$ wget \
 http://selected-mirror/hadoop/core/hadoop-1.0.0/hadoop-1.0.0.tar.gz
--2012-02-04 18:29:31-- http://selected-mirror/hadoop/core/hadoop-1.0.0↵
 /hadoop-1.0.0.tar.gz
Resolving selected-mirror... a.b.c.d
Connecting to selected-mirror|a.b.c.d|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 59468784 (57M) [application/x-gzip]
Saving to: `hadoop-1.0.0.tar.gz'

100%[==>] 59,468,784 1.88M/s in 26s

2012-02-04 18:29:56 (2.21 MB/s) - `hadoop-1.0.0.tar.gz' saved [59468784/59468784]

2. Unpack the tarball.

[esammer@hadoop01 hadoop]$ tar -zxf hadoop-1.0.0.tar.gz
[esammer@hadoop01 hadoop]$ ls hadoop-1.0.0
bin docs ivy README.txt
build.xml hadoop-ant-1.0.0.jar ivy.xml sbin
c++ hadoop-core-1.0.0.jar lib share
CHANGES.txt hadoop-examples-1.0.0.jar libexec src
conf hadoop-test-1.0.0.jar LICENSE.txt webapps
contrib hadoop-tools-1.0.0.jar NOTICE.txt

You’ll notice that the directory includes common directories like bin, sbin, lib,
libexec, share, as well as conf directory that contains configuration files. The pri-
mary jar files containing the Hadoop code are hadoop-core-1.0.0.jar and hadoop-
tools-1.0.0.jar. In the src directory, you’ll find the source code for Hadoop itself.
This can be a useful reference for how Hadoop works, although it does require
intermediate to advanced level Java knowledge to understand.

The version 1.0.0 lineage of Hadoop releases has a large number of group writable
files in the tarball. While not critical, it is a strange decision and some administra-
tors will want to remove this permission:

[esammer@hadoop01 hadoop]$ chmod -R g-w hadoop-1.0.0/

3. Move the unpacked directory to the proper location on the filesystem.

The proper location to install Hadoop is left entirely to the administrator when
installing from a tarball. For personal testing installations, your home directory
may be fine, whereas production deployments may live in /usr/local or /opt. If you
elect to deploy Hadoop in a system directory such as /usr/local, you’ll need root
privileges to move files there; /usr/local usually has the ownership root:root with
the permissions 0755. We’ll use /usr/local for now:

[esammer@hadoop01 hadoop]$ sudo mv hadoop-1.0.0 /usr/local/

Installing Hadoop | 77

www.it-ebooks.info

http://www.apache.org/dyn/closer.cgi/hadoop/common/
http://www.it-ebooks.info/

If you’ve moved Hadoop to a system directory, don’t forget to change the owner
and group:

[esammer@hadoop01 hadoop]$ cd /usr/local/
[esammer@hadoop01 local]$ sudo chown -R root:root hadoop-1.0.0/

From here on out, you’ll need to work as root to make changes within the directory.

Make sure that the directory containing the Hadoop software is not
writable by the user MapReduce tasks will execute as. If it is, it’s
trivial to write a MapReduce job that alters the software itself to
change its behavior.

4. Relocate the conf directory (optional).

Hadoop expects to find its conf directory in $HADOOP_HOME (which in our case is
hadoop-1.0.0). One option is to leave the conf directory where it is, but that has a
few notable downsides. For instance, leaving the directory where it is means that
when we inevitably upgrade to a newer version of Hadoop, we now need to copy
configuration files between versions. Another problem is that we may want to
monitor the directory tree in which we’ll install this directory with an intrusion
detection system (IDS) like Tripwire. The most obvious reason to move the conf
directory, though, is that configuration files for every other system live in /etc and
we’re just used to looking there.

The simplest way to relocate conf is to move the directory where you want it and
create a symlink to the new location:

[esammer@hadoop01 local]$ sudo mkdir /etc/hadoop/
[esammer@hadoop01 local]$ cd hadoop-1.0.0
[esammer@hadoop01 hadoop-1.0.0]$ sudo mv conf /etc/hadoop/conf-1.0.0
[esammer@hadoop01 hadoop-1.0.0]$ ln -s /etc/hadoop/conf-1.0.0 ./conf

Later, we’ll use configuration variables in hadoop-env.sh to specify alternate loca-
tions for Hadoop’s log and pid file directories.

Package installation

Starting with release 0.20.203, Apache Hadoop is also available as RPM and Debian
format packages. Using packages for installation greatly simplifies the process and re-
duces the chance of error. The packages provided by the ASF do not specify any external
dependencies and should work on any system that supports packages of that format.
While simpler than producing versions of the packages for each version of each distri-
bution of Linux, it means that package conflicts are ignored and dependencies are not
automatically pulled in during installation so care must be taken to first validate the
system is in a clean state prior to installation. Although there aren’t distribution specific
versions of packages, there are specific packages for both x86 (i386) and x86-64
(amd64) architectures; be sure to download the proper packages for your machines.

78 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

The act of installing packages on RPM or Debian based systems is trivial. For RPM
based systems, administrators can use rpm directly or a higher level tool like yum. Sim-
ilarly, Debian derivatives use either deb or apt-get for package installation.

We can examine the metadata included in the rpm prior to installing it. Note that even
though it is possible to relocate some of the directory trees, it may break Hadoop at
runtime. If you’re using packages, it’s strongly advised that you do not attempt to
relocate files or directories after installation:

[esammer@hadoop01 hadoop]$ rpm -q -p hadoop-1.0.0-1.amd64.rpm --info
Name : hadoop Relocations: /usr /etc/hadoop
 /var/log/hadoop
 /var/run/hadoop
Version : 1.0.0 Vendor: Apache Software Foundation
Release : 1 Build Date: Thu 15 Dec 2011
 11:41:22 AM EST
Install Date: (not installed) Build Host: devadm900.cc1.ygridcore.net
Group : Development/Libraries Source RPM: hadoop-1.0.0-1.src.rpm
Size : 55430227 License: Apache License, Version 2.0
Signature : (none)
URL : http://hadoop.apache.org/core/
Summary : The Apache Hadoop project develops open-source software for reliable,
 scalable, distributed computing
Description :
The Apache Hadoop project develops open-source software for reliable, scalable,
distributed computing. Hadoop includes these subprojects:

Hadoop Common: The common utilities that support the other Hadoop subprojects.
HDFS: A distributed file system that provides high throughput access to
 application data.
MapReduce: A software framework for distributed processing of large data sets on
 compute clusters.

As mentioned earlier, the act of installation is relatively simple when using packages:

[esammer@hadoop01 hadoop]$ sudo rpm -ihv hadoop-1.0.0-1.amd64.rpm
Preparing... ### [100%]
 1:hadoop ### [100%]

Some of advantages of installing Hadoop using packages include:

Simplicity
Files and directories are guaranteed to have the correct permissions.

Consistency
Files and directories are installed according to the FHS; configuration files are
in /etc/hadoop, logs in /var/log/hadoop, executables are in /usr/bin, and so forth.

Integration
It is easy to integrate an Hadoop installation with configuration management soft-
ware like Chef and Puppet since Hadoop can now be installed just like other soft-
ware packages.

Installing Hadoop | 79

www.it-ebooks.info

http://www.it-ebooks.info/

Versioning
As newer versions of Hadoop are related, the process of upgrading the software on
disk can be deferred to the package manager.

A brief check of rpm -q hadoop -l reveals a complete list of all files contained in the
package and their install locations. The most important paths to know about are as
follows:

/etc/hadoop
Hadoop’s configuration files. The equivalent of the conf directory in the tarball.

/etc/rc.d/init.d
Standard SYSV style init scripts for each Hadoop daemon. On CentOS and RHEL, /
etc/init.d is actually a symlink to /etc/rc.d/init.d meaning you can access these files
as you would any other init script.

/usr/bin
The main hadoop executable as well as the task-controller binary (see Chapter 6
for details on task-controller).

/usr/include/hadoop
C++ header files for Hadoop Pipes.

/usr/lib
C libraries for Hadoop. This is where libhdfs.so, libhadoop.a, and libhadoop-
pipes.a live, for example.

/usr/libexec
Miscellaneous files used by various libraries and scripts that come with Hadoop.
These files are normally not touched by administrators.

/usr/sbin
Many of the helper shell scripts used by administrators of Hadoop are installed
here such as start-*.sh, stop-*.sh, hadoop-daemon.sh and the recently added hadoop-
setup-*.sh scripts.

/usr/share/doc/hadoop
License, NOTICE, and README files.

CDH
Cloudera’s Distribution including Apache Hadoop (or just CDH) is an alternative to
downloading Hadoop directly from the Apache Software Foundation. Starting with a
given release of Hadoop, Cloudera backports critical features and bug fixes from newer
versions of Apache Hadoop and in some cases, previously unreleased branches of de-
velopment. All code in CDH is fully open source and available under the Apache Soft-
ware License 2.0; the same license as Apache Hadoop itself. Additionally, CDH in-
cludes packages of other open source projects related to Apache Hadoop like Hive,
HBase, Pig, Sqoop, Flume, and others.

80 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Just like Apache Hadoop proper, CDH is available as tarballs as well as popular package
formats like RPM and Debian packages. Reasons for choosing one format of CDH over
the other are driven by the same factors outlined earlier. All releases of CDH can be
downloaded directly from Cloudera at http://www.cloudera.com/downloads. Cloudera
also provides extensive documentation on their support portal for the operating sys-
tems and installation methods they support.

Cloudera has both yum and apt-get format repositories available, which further sim-
plifies large deployments. Users who opt to use these repositories only need to install
a single package to make their machines aware of the repository and then may use yum or
apt-get to install any of the packages available therein.

[root@hadoop01 ~]# rpm -ihv http://archive.cloudera.com/redhat/cdh/⦵
 cdh3-repository-1.0-1.noarch.rpm
Retrieving http://archive.cloudera.com/redhat/cdh/cdh3-repository-1.0-1.noarch.rpm
Preparing... ### [100%]
 1:cdh3-repository ### [100%]

The cdh3-repository-1.0-1.noarch.rpm package simply installs the proper files to make
yum aware of the Cloudera repository of CDH3 packages. If we were to examine the
contents of the package, we’d see that it simply added a file in /etc/yum.repos.d:

[root@hadoop01 ~]# rpm -q cdh3-repository -l
/etc/pki/rpm-gpg
/etc/pki/rpm-gpg/RPM-GPG-KEY-cloudera
/etc/yum.repos.d/cloudera-cdh3.repo
/usr/share/doc/cdh3-repository-1.0
/usr/share/doc/cdh3-repository-1.0/LICENSE

With the machine now aware of Cloudera’s repository, packages can be installed using
yum:

[root@hadoop01 ~]# yum install hadoop-0.20
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
 * base: mirrors.usc.edu
 * extras: mirror.cogentco.com
 * updates: mirrors.usc.edu
Setting up Install Process
Resolving Dependencies
--> Running transaction check
---> Package hadoop-0.20.noarch 0:0.20.2+923.194-1 set to be updated
--> Finished Dependency Resolution

Dependencies Resolved

==
 Package Arch Version Repository Size
==
Installing:
 hadoop-0.20 noarch 0.20.2+923.194-1 cloudera-cdh3 30 M

Installing Hadoop | 81

www.it-ebooks.info

http://www.cloudera.com/downloads
http://ccp.cloudera.com
http://www.it-ebooks.info/

Transaction Summary
==
Install 1 Package(s)
Upgrade 0 Package(s)

Total download size: 30 M
Is this ok [y/N]: y
Downloading Packages:
hadoop-0.20-0.20.2+923.194-1.noarch.rpm | 30 MB 04:29
warning: rpmts_HdrFromFdno: Header V4 DSA signature: NOKEY, key ID e8f86acd
cloudera-cdh3/gpgkey | 1.7 kB 00:00
Importing GPG key 0xE8F86ACD "Yum Maintainer <webmaster@cloudera.com>" ↵
 from http://archive.cloudera.com/redhat/cdh/RPM-GPG-KEY-cloudera
Is this ok [y/N]: y
Running rpm_check_debug
Running Transaction Test
Finished Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing : hadoop-0.20 1/1

Installed:
 hadoop-0.20.noarch 0:0.20.2+923.194-1

Complete!

In CDH, some components are provided as separate packages to minimize download
size and allow administrators to customize their deployment. For example, you may
note that the hadoop-0.20 package is listed as being architecture agnostic (noarch), but
we know Hadoop has native code. These components are available as separate RPMs
and can be just as easily installed, but what packages are available? We can use
yum list available | grep cloudera-cdh3 to find all available packages from the
repository.

[root@hadoop01 ~]# yum list available | grep cloudera-cdh3
flume.noarch 0.9.4+25.40-1 cloudera-cdh3
flume-master.noarch 0.9.4+25.40-1 cloudera-cdh3
flume-node.noarch 0.9.4+25.40-1 cloudera-cdh3
hadoop-0.20.noarch 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-conf-pseudo.noarch 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-datanode.noarch 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-debuginfo.i386 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-debuginfo.x86_64 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-doc.noarch 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-fuse.i386 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-fuse.x86_64 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-jobtracker.noarch 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-libhdfs.i386 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-libhdfs.x86_64 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-namenode.noarch 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-native.i386 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-native.x86_64 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-pipes.i386 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-pipes.x86_64 0.20.2+923.194-1 cloudera-cdh3

82 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

hadoop-0.20-sbin.i386 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-sbin.x86_64 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-secondarynamenode.noarch 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-source.noarch 0.20.2+923.194-1 cloudera-cdh3
hadoop-0.20-tasktracker.noarch 0.20.2+923.194-1 cloudera-cdh3
hadoop-hbase.noarch 0.90.4+49.137-1 cloudera-cdh3
hadoop-hbase-doc.noarch 0.90.4+49.137-1 cloudera-cdh3
hadoop-hbase-master.noarch 0.90.4+49.137-1 cloudera-cdh3
hadoop-hbase-regionserver.noarch 0.90.4+49.137-1 cloudera-cdh3
hadoop-hbase-thrift.noarch 0.90.4+49.137-1 cloudera-cdh3
hadoop-hive.noarch 0.7.1+42.36-2 cloudera-cdh3
hadoop-hive-metastore.noarch 0.7.1+42.36-2 cloudera-cdh3
hadoop-hive-server.noarch 0.7.1+42.36-2 cloudera-cdh3
hadoop-pig.noarch 0.8.1+28.26-1 cloudera-cdh3
hadoop-zookeeper.noarch 3.3.4+19.3-1 cloudera-cdh3
hadoop-zookeeper-server.noarch 3.3.4+19.3-1 cloudera-cdh3
hue.noarch 1.2.0.0+114.20-1 cloudera-cdh3
hue-about.noarch 1.2.0.0+114.20-1 cloudera-cdh3
hue-beeswax.noarch 1.2.0.0+114.20-1 cloudera-cdh3
hue-common.i386 1.2.0.0+114.20-1 cloudera-cdh3
hue-common.x86_64 1.2.0.0+114.20-1 cloudera-cdh3
hue-filebrowser.noarch 1.2.0.0+114.20-1 cloudera-cdh3
hue-help.noarch 1.2.0.0+114.20-1 cloudera-cdh3
hue-jobbrowser.noarch 1.2.0.0+114.20-1 cloudera-cdh3
hue-jobsub.noarch 1.2.0.0+114.20-1 cloudera-cdh3
hue-plugins.noarch 1.2.0.0+114.20-1 cloudera-cdh3
hue-proxy.noarch 1.2.0.0+114.20-1 cloudera-cdh3
hue-shell.i386 1.2.0.0+114.20-1 cloudera-cdh3
hue-shell.x86_64 1.2.0.0+114.20-1 cloudera-cdh3
hue-useradmin.noarch 1.2.0.0+114.20-1 cloudera-cdh3
mahout.noarch 0.5+9.3-1 cloudera-cdh3
oozie.noarch 2.3.2+27.12-1 cloudera-cdh3
oozie-client.noarch 2.3.2+27.12-1 cloudera-cdh3
sqoop.noarch 1.3.0+5.68-1 cloudera-cdh3
sqoop-metastore.noarch 1.3.0+5.68-1 cloudera-cdh3
whirr.noarch 0.5.0+4.8-1 cloudera-cdh3

The hadoop-0.20 packages with the debuginfo, fuse, libhdfs, native, pipes, and sbin
suffixes all have both x86 as well as x86-64 architecture versions available. Specifying
multilib_policy=best in /etc/yum.conf will instruct yum to install the architecture that
best matches your system. By default, multilib_policy is set to the value all which
causes all architecture versions of a package to be installed. You may also notice that
there are separate packages named for each daemon. These packages contain just the
init scripts for their respective daemon process; all of the code is contained in the main
hadoop-0.20 package. In most cases, and when you’re unsure of what daemons will
run where, it’s best to simply install all of the hadoop-0.20, hadoop-0.20-doc, ha-
doop-0.20-native, hadoop-0.20-libhdfs, hadoop-0.20-sbin, and the init script packages
on all machines in the cluster.

CDH packaging looks very similar to that of Apache Hadoop’s RPMs with some im-
portant differences.

Installing Hadoop | 83

www.it-ebooks.info

http://www.it-ebooks.info/

Use of alternatives
CDH makes heavy use of the alternatives system, which allows multiple alterna-
tive versions of files to be installed on the system concurrently and easily switched
between. Specifically, Hadoop’s conf directory, main executable, log directory, and
even the Hadoop software itsef, are all managed by alternatives and can be altered
should this be desirable. Of course, this isn’t something most users want to concern
themselves with, and you aren’t necessarily encouraged to start moving things
around, but it’s worth understanding where all the symlinks come from. For details
on the alternatives system, see man 8 alternatives on RedHat-like systems or
man 8 update-alternatives on Debian derivatives.

Modification of limits
Cloudera’s packages install include files in /etc/security/limits.d that automatically
add the proper nofile and nproc limits for the users hdfs and mapred.

Hadoop home location
The Hadoop software itself is installed in /usr/lib/hadoop-0.20 (and symlinked
to /usr/lib/hadoop by way of alternatives) rather than /usr/share/hadoop. Users are
encouraged to use the version agnostic path for scripts and tools whenever possible.
This alleviates substantial pain when migrating from one version of Hadoop to
another.

It’s not uncommon for large-scale Linux environments to have internal yum or
apt-get repositories that are mirrors of the outside world. This reduces external net-
work traffic but more importantly, solves the problem of having segments of the net-
work without external Internet connectivity. If your Hadoop cluster doesn’t have ex-
ternal connectivity and you still want to be able to take advantage of yum or apt-get
features, you can mirror the Cloudera repository internally and point machines at your
copy of the packages. There are a number of tutorials on the Internet describing how
to configure an internal package mirror including on Cloudera’s support portal.

Configuration: An Overview
This is almost certainly the section that motivated your purchase of this book, and with
good reason. As you’re probably aware, the good news is that Hadoop is highly con-
figurable. The bad news, of course, is that Hadoop is highly configurable. Developers
can sneak by, tweaking only a handful of parameters, but administrators responsible
for large scale, mission critical clusters aren’t so lucky. A thorough understanding of at
least half of the almost 300 parameters is not a luxury, but the cost of doing business.
Don’t let the volume of parameters, the number of configuration files, or the somewhat
(shall we say) succinct documentation scare you off.

This section is organized by subsystem or component in an effort to make the infor-
mation accessible. Critical parameters are highlighted and when appropriate, related
or interdependent parameters are cross referenced. Further, each section below is
organized such that the most generic, system wide parameters are described first, while

84 | Chapter 5: Installation and Configuration

www.it-ebooks.info

https://ccp.cloudera.com/display/CDHDOC/Creating+a+Local+Yum+Repository
http://www.it-ebooks.info/

optimizations and special cases follow later. Since the topic of securing Hadoop is so
vast, an entire chapter—Chapter 6—is dedicated to the subject.

Deprecated Property Names
In Apache Hadoop 2.0 and CDH4, as a result, many of the configuration properties
found in the primary XML files were renamed to better indicate what they did and the
daemons they affect. Rather than force administrators to go through the painful process
of updating all configuration files, the developers chose to maintain backward com-
patibility with the old property names. Throughout this book, we’ll continue to use the
old property names since many users still deploy Apache Hadoop 1.0 and CDH3 and
they still work in the newer versions of the software. Clearly the writing is on the wall,
however, and you should begin to familiarize yourself with the new property names as
soon as possible. Thankfully, the developers were kind enough to publish a list of the
deprecated properties along with their new names, available at http://hadoop.apache
.org/common/docs/r2.0.0-alpha/hadoop-project-dist/hadoop-common/DeprecatedPro
perties.html. There are cases, notably namenode high availability and federation, where
the new property names must be used. When describing those features we use these
new names, as there’s no other option.

Configuration of Hadoop can be divided into four major scopes: cluster, daemon, job,
and individual operation level scope. Administrators exclusively control the first two,
while developers primarily deal with the latter two, although it is possible to prevent
certain parameters from being overridden as we’ll see later. Global, cluster level pa-
rameters control how the software itself is deployed, service identification, access con-
trols, and integration with the OS and external systems. Some parameters vary from
daemon to daemon and, most notably, between services like HDFS and MapReduce.
These parameters can not be changed without restarting the daemons which they affect.
As this implies, not all configuration parameters can be changed without some degree,
even minor, of service interruption. Many of Hadoop’s parameters can be specified at
the MapReduce job level with administrators providing only default values. Developers
or automated systems that submit jobs can override these values in code or from the
command line, where applicable. Lastly, some parameters can be specified per opera-
tion, provided the code or context supports it. A good example of this are the
hadoop fs commands; files, for instance, may be copied to HDFS with different repli-
cation factors or even to different clusters.

The primary method of specifying configuration parameters is a series of configuration
files read by Hadoop daemons and clients. The following configuration files exist in
the conf directory:

hadoop-env.sh
A bourne shell fragment sourced by the Hadoop scripts, this file specifies environ-
ment variables that affect the JDK used by Hadoop, daemon JDK options, the pid

Configuration: An Overview | 85

www.it-ebooks.info

http://hadoop.apache.org/common/docs/r2.0.0-alpha/hadoop-project-dist/hadoop-common/DeprecatedProperties.html
http://hadoop.apache.org/common/docs/r2.0.0-alpha/hadoop-project-dist/hadoop-common/DeprecatedProperties.html
http://hadoop.apache.org/common/docs/r2.0.0-alpha/hadoop-project-dist/hadoop-common/DeprecatedProperties.html
http://www.it-ebooks.info/

file, and log file directories. Covered in “Environment Variables and Shell
Scripts” on page 88.

core-site.xml
An XML file that specifies parameters relevant to all Hadoop daemons and clients.

hdfs-site.xml
An XML file that specifies parameters used by the HDFS daemons and clients.

mapred-site.xml
An XML file that specifies parameters used by the MapReduce daemons and cli-
ents.

log4j.properties
A Java property file that contains all log configuration information. Covered in
“Logging Configuration” on page 90.

masters (optional)
A newline separated list of machines that run the secondary namenode, used only
by the start-*.sh helper scripts.

slaves (optional)
A newline separated list of machine names that run the datanode / tasktracker pair
of daemons, used only by the start-*.sh helper scripts.

fair-scheduler.xml (optional)
The file used to specify the resource pools and settings for the Fair Scheduler task
scheduler plugin for MapReduce.

capacity-scheduler.xml (optional)
The name of the file used to specify the queues and settings for the Capacity
Scheduler task scheduler plugin for MapReduce.

dfs.include (optional, conventional name)
A newline separated list of machine names that are permitted to connect to the
namenode.

dfs.exclude (optional, conventional name)
A newline separated list of machine names that are not permitted to connect to the
namenode.

hadoop-policy.xml
An XML file that defines which users and / or groups are permitted to invoke
specific RPC functions when communicating with Hadoop.

mapred-queue-acls.xml
An XML file that defines which users and / or groups are permitted to submit jobs
to which MapReduce job queues.

taskcontroller.cfg
A Java property−style file that defines values used by the setuid task-controller
MapReduce helper program used when operating in secure mode.

86 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Many of these files are loaded by Hadoop by way of Java’s ClassLoader resource loading
mechanic which provides an API to load files by name from any directory in the class-
path of the application. The Hadoop scripts ensure the conf directory is always at the
head of the classpath so files can easily be located by the code. For files like hadoop-
env.sh, masters, and slaves the supporting shell scripts use some rather complicated
logic to find them; so complicated, in fact, it is covered separately in “Environment
Variables and Shell Scripts” on page 88. Other files like dfs.include, dfs.exclude, fair-
scheduler.xml, and capacity-scheduler.xml must be separately configured, depending
on what features you choose to enable. The taskcontroller.cfg file is related to Hadoop
security, and is discussed in “Configuring Hadoop security” on page 152.

The Hadoop XML Configuration Files
Hadoop uses a simple XML file format for its three primary configuration files core-
site.xml, hdfs-site.xml, and mapred-site.xml. These files control the configuration of the
common libraries used by Hadoop, HDFS, and MapReduce, respectively. Properties
defined in each of these three files override built in default values which are contained
within the main Hadoop jar file. When a MapReduce job is run, the job configuration
provided by the developer can, in turn, override properties configured on the server.

The line between which properties can be overridden at runtime and which cannot is
a bit fuzzy at times. For instance, a developer can (and usually should) override the
number of reducers for a given MapReduce job while it never makes sense for a devel-
oper to try and specify the port on which the namenode should listen for RPC connec-
tions (not to mention it would be too late; the namenode is already running). In situa-
tions where it is possible for a developer to override a property but they should not be
permitted to do so, an administrator can mark a property as final to prevent it from
happening. When a property is marked final on the cluster but it’s set by a job, the
framework simply disregards the value set by the job, and allows it to continue. That
is, the offending property is simply ignored. Sometimes a developer will complain that
a property they set does not appear to “stick.” This is usually the result of a property
they’re trying to set being marked final.

The format of each of these XML files (see Example 5-1) should be self explanatory.

Example 5-1. Sample Hadoop XML configuration file

<?xml version="1.0"?>
<configuration>

 <!-- Set 'some.property.name' to the value 'some-value'.
 <property>
 <name>some.property.name</name>
 <value>some-value</value>
 </property>

Configuration: An Overview | 87

www.it-ebooks.info

http://docs.oracle.com/javase/6/docs/api/java/lang/ClassLoader.html
http://www.it-ebooks.info/

 <!--
 Set 'foo.bar.baz' to the value '42' and prevent it from
 being overridden by marking it final.
 -->
 <property>
 <name>foo.bar.baz</name>
 <value>42</value>
 <final>true</final>
 </property>

 <!-- Additional property elements... -->

</configuration>

In the following sections, only property names and values are given in the interest of
space. Each property should be defined as in Example 5-1. The file in which a given
group of properties should be set is listed in the beginning of each section. When there
are exceptions, the configuration file is called out next to the property name. For ex-
ample, the fs.default.name property (fs.default.name (core-site.xml) on page 93) is
an HDFS property, but must be set in core-site.xml.

Environment Variables and Shell Scripts
The Hadoop executable, along with many of the scripts it calls and those that call it,
uses a myriad of environment variables to locate files and alter the behavior of the
system. There are two types of environment variables: those that are used by the scripts
to locate the software and configuration files, and those that define the environment
in which the daemons and child tasks execute. Variables that affect daemon settings
such as the location of the JDK and Java options used to launch daemons are necessary
to the operation of Hadoop. The set of variables that alter how Hadoop locates its
configuration files and even the software itself are used far less often, but are explained
as well. To be absolutely clear, this is not an endorsement of making excessive use of
such so called features. There are, however, exceptional circumstances when there is
little other choice, and this kind of flexibility is useful. In most cases, knowledge of
Hadoop’s environmental intricacies is useful only to aid in troubleshooting the more
clever solutions dreamt up by cluster users.

The file that controls the environment of the Hadoop daemons, including the argu-
ments with which they’re launched, the location of the JDK, and the log and pid file
directories is hadoop-env.sh, and it’s found in the standard Hadoop configuration di-
rectory. Within hadoop-env.sh you must properly configure the location of the JDK by
setting $JAVA_HOME. It is true that the hadoop command will try and discover the location
of Java if this isn’t set, but you run the risk of accidentally picking up the wrong version
if multiple JDKs are installed on the system. Additionally, any options that should be
passed to the daemon processes can be set in the $HADOOP_daemon_OPTS variables where
daemon is the name of the process. Usually, the maximum Java heap size, JMX

88 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

configuration options, and garbage collection tuning parameters are the most com-
monly passed arguments. See Example 5-2 for an example environment configuration
file.

Apache Bigtop
Newer versions of Hadoop are based on a new project called Apache
Bigtop. Bigtop is a meta-project in that it strictly deals with the build,
packaging, and testing of Hadoop ecosystem projects under a single
umbrella. In order to unify the behavior of functions like locating the
proper JDK to use, versions of Hadoop based on Bigtop use a set of
helper scripts provided by Bigtop rather than each project implementing
this logic. This means some versions of Hadoop may not respect all
settings in files like hadoop-env.sh. See the Hadoop release notes for your
version for more information. More information about Apache Bigtop
is available at http://incubator.apache.org/bigtop/.

Rarely should there be a need to set these variables within individual shell sessions. In
fact, if you catch yourself thinking about setting something like $HADOOP_CONF_DIR or
$HADOOP_HOME, it’s probably worth taking a hard look at how the software is deployed.
The hadoop command will, provided it’s in your path, locate $HADOOP_HOME correctly in
almost all cases. It also looks for a conf directory in $HADOOP_HOME as the default value
of $HADOOP_CONF_DIR. Rather than redefine $HADOOP_CONF_DIR, it is usually far simpler to
just symlink the conf directory to minimize the amount of special knowledge applica-
tions need to use the cluster.

In some cases, users may ask administrators to add jar files to $HADOOP_CLASSPATH so
they may be used in MapReduce jobs. Resist this at all costs. Instead, gently encourage
users to use Hadoop’s Distributed Cache feature to push job dependencies to the nodes
of the cluster where they are required when they submit the job. By using the Dis-
tributed Cache, you avoid adding user defined classes to the classpath of the Hadoop
daemons (which is what $HADOOP_CLASSPATH actually does) and potentially destablizing
the framework. Should you or your users require further motivation, remember that to
alter the classes on $HADOOP_CLASSPATH, all tasktrackers must be restarted. You definitely
don’t want to interrupt all cluster activity every time a new version of someone’s favorite
Java library is released. See Example 5-2.

Example 5-2. Sample hadoop-env.sh file

Set Hadoop-specific environment variables here.

The java implementation to use. Required.
export JAVA_HOME=/usr/lib/j2sdk1.6-sun
JAVA_HOME=/usr/java/jdk1.6.0_31/

Extra Java CLASSPATH elements. Optional.
export HADOOP_CLASSPATH="<extra_entries>:$HADOOP_CLASSPATH"

Environment Variables and Shell Scripts | 89

www.it-ebooks.info

http://incubator.apache.org/bigtop/
http://www.it-ebooks.info/

Command specific options appended to HADOOP_OPTS when specified
export HADOOP_NAMENODE_OPTS="-Xmx8g -Dcom.sun.management.jmxremote ↵
 $HADOOP_NAMENODE_OPTS"
export HADOOP_SECONDARYNAMENODE_OPTS="-Xmx8g -Dcom.sun.management.jmxremote ↵
 $HADOOP_SECONDARYNAMENODE_OPTS"
export HADOOP_DATANODE_OPTS="-Dcom.sun.management.jmxremote $HADOOP_DATANODE_OPTS"
export HADOOP_BALANCER_OPTS="-Dcom.sun.management.jmxremote $HADOOP_BALANCER_OPTS"
export HADOOP_JOBTRACKER_OPTS="-Xmx8g -Dcom.sun.management.jmxremote ↵
 $HADOOP_JOBTRACKER_OPTS"
export HADOOP_TASKTRACKER_OPTS=
The following applies to multiple commands (fs, dfs, fsck, distcp etc)
export HADOOP_CLIENT_OPTS

Where log files are stored. $HADOOP_HOME/logs by default.
export HADOOP_LOG_DIR=${HADOOP_HOME}/logs

File naming remote slave hosts. $HADOOP_HOME/conf/slaves by default.
export HADOOP_SLAVES=${HADOOP_HOME}/conf/slaves

The directory where pid files are stored. /tmp by default.
export HADOOP_PID_DIR=/var/hadoop/pids

A string representing this instance of hadoop. $USER by default.
export HADOOP_IDENT_STRING=$USER

The scheduling priority for daemon processes. See 'man nice'.
export HADOOP_NICENESS=10

The Legacy of $HADOOP_HOME and $HADOOP_PREFIX
After version 0.20.205 (and subsequently 1.0), the environment variable
$HADOOP_HOME was deprecated in favor of $HADOOP_PREFIX. It’s unclear as to the motiva-
tion (there’s no Apache JIRA that mentions the introduction of $HADOOP_PREFIX or the
deprecation of $HADOOP_HOME) and has caused a noticeable amount of grumbling in the
Hadoop community from cluster administrators. The speculation is that this is the
result of the plan to separate the three Hadoop components - common, HDFS, and
MapReduce - into separate projects, but provide a simpler method of letting each know
about the location of the other without requiring three separate $HADOOP_COMPO
NENT_HOME variables. Of course, the result is that we’re left with a single project and a
single variable, just with a different name.

Logging Configuration
Almost all of Hadoop uses the Java logging package log4j to control log output. The
main log4j configuration file is a standard Java property format file called log4j.prop-
erties and can be found in Hadoop’s conf directory. This file controls the overall log
levels of both the Hadoop daemons as well as MapReduce jobs that execute on the
cluster.

90 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://logging.apache.org/log4j/
http://www.it-ebooks.info/

If you’re not already familiar with log4j, there are a few core concepts of which to be
aware. A logger is a named channel for log events that has a specified minimum log
level. The supported log levels, in order of most severe to least, are FATAL, ERROR,
WARN, INFO, DEBUG, and TRACE. The minimum log level acts as a filter: log events
with a log level greater than or equal to that which is specified are accepted while less
severe events are simply discarded. Loggers are hierarchical; each logger has a parent
logger from which it inherits its configuration information. At the top of the inheritance
tree is a root logger which is a logger with no parent. As you would expect, each logger
is free to override any of the parameters it so chooses. Loggers output their log events
to an appender which is responsible to handling the event in some meaningful way. By
far, the most commonly used appenders write log events to disk, but appenders for
outputting log events to the console, sending data to syslog, or even to JMS exist. The
final component in log4j is the layout which acts as a formatter for log events. One of
the most powerful aspects of log4j is that the log level of each logger, its appender, and
the layout are all configured via the configuration file so they may be changed at
runtime.

The log4j configuration file format is a standard Java properties file (i.e. key value pairs)
as mentioned earlier. What is notable is how it uses a dot separated pseudo-hierarchical
naming convention to model concepts like inheritance. Log4j properties begin with the
log4j prefix, but since the file is a properties file, administrators are free to set their
own variables and reference them later: something the Hadoop log4j.properties file does
often. Log4j has a few special properties that must be set for it to function, the most
important of which is log4j.rootLogger which specifies the default log level and ap-
pender to be used by all loggers. Loggers can be specified by using the naming con-
vention of log4j.logger.logger-name. Logger names are defined by the application, but
are almost always the name of the Java class that is generating the log events. The
hierarchical relationship of a logger is defined by dotted notation with descendants
having their parent’s prefix. For example, the logger org.apache is the parent of
org.apache.hadoop, which is the parent of org.apache.hadoop.hdfs and so on. If we
wanted to limit the log level of all HDFS classes (or, more accurately, loggers which
were named for their respective HDFS classes) to the WARN level, we could set the
property log4j.logger.org.apache.hadoop.hdfs = WARN. The value of a logger param-
eter is always a log level, a comma, and the name of one or more appenders. The comma
and appender list is optional, in which case, the logger inherits the appender of its
parent.

The default log4j.properties file that ships with Hadoop is complex, at a minimum.
Table 5-1 contains a summary of what it all means.

Table 5-1. Hadoop log4j configuration summary

Setting Value

hadoop.log.dir .

hadoop.root.logger INFO, console

Logging Configuration | 91

www.it-ebooks.info

http://www.it-ebooks.info/

Setting Value

log4j.rootLogger ${hadoop.root.logger}, EventCounter

hadoop.security.logger INFO, console

hadoop.mapreduce.jobsummary.logger ${hadoop.root.logger}

hadoop.security.log.file SecurityAuth.audit

hadoop.mapreduce.jobsummary.log.file hadoop-mapreduce.jobsummary.log

Logger name Value

SecurityLogger ${hadoop.security.logger}

org.apache.hadoop.mapred.JobInProgress$JobSummary ${hadoop.mapreduce.jobsummary.logger}

org.apache.hadoop.hdfs.server.namenode.FSNamesys-
tem.audit

WARNa

org.jets3t.service.impl.rest.httpclient.RestS3Service ERROR

Appender Value

console stderr

RFA ${hadoop.log.dir}/${hadoop.log.file}

DRFA ${hadoop.log.dir}/${hadoop.log.file}

DRFAS ${hadoop.log.dir}/$
{hadoop.security.log.file}

JSA ${hadoop.log.dir}/${hadoop.mapreduce.job
summary.log.file}

TLA org.apache.hadoop.mapred.TaskLogAppender

EventCounter org.apache.hadoop.metrics.jvm.Even
tCounter

a Since HDFS audit events are logged at the INFO level, this effectively disables auditing.

You may notice that some of the appenders listed aren’t referenced by any of the loggers.
This is perfectly legal (although the inverse is not) and is done to make it as simple as
possible to select a different type of appender quickly. If all of this has you wondering
how much of this you really need to worry about in practice, don’t worry. None of
these settings need to be changed to run Hadoop in production although you may find
them to be of interest in special circumstances. If all you want to do is increase or
decrease the verbosity of Hadoop globally, look no further than hadoop.root.logger,
but be warned; too much logging can fill up disks and too little will leave you without
the necessary information when debugging production problems. When in doubt, ad-
just the log level of individual packages (by creating a logger for the Java package of
interest) rather than making global changes.

92 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

HDFS
The following properties should be set in the hdfs-site.xml file unless otherwise indi-
cated. The format of hdfs-site.xml is explained “The Hadoop XML Configuration
Files” on page 87.

Identification and Location
Configuring HDFS is relatively straight forward with only a few parameter changes
required for a sound base configuration. The first set of parameters we’ll examine are
those that identify HDFS to clients and specify local filesystem paths used by the name-
node, datanode, and secondary namenode daemons.

fs.default.name (core-site.xml)
The fs.default.name parameter is a URL that specifies the default filesystem used
by clients. Developers use the static get() method of the FileSystem abstract class
to gain access to a specific implementation of a filesystem. The implementation
returned by get() is based on the URL specified in the configuration file. By default,
fs.default.name is set to file:/// which means clients access the local Linux filesys-
tem, similar to Java’s standard File class. This is sometimes used for testing or
special cases, but production clusters that use HDFS will want this to instead use
the form hdfs://hostname:port where hostname and port are the machine and port
on which the namenode daemon runs and listens. This parameter serves double
duty in that it also informs the namenode as to which IP and port it should bind.
Datanodes heartbeat to this hostname and port as well. Although many adminis-
trators choose to specify hostnames, it is possible to instead reference machines by
IP address. The commonly used port for the namenode is 8020 and, although you
are free to specify any port you wish, you may find it easier to follow documentation
and reference material if you don’t have to constantly translate port numbers in
your head.

Used by: NN, DN, SNN, JT, TT, clients.

dfs.name.dir
One of the most critical parameters, dfs.name.dir specifies a comma separated list
of local directories (with no spaces) in which the namenode should store a copy of
the HDFS filesystem metadata. Given the criticality of the metadata, administrators
are strongly encouraged to specify two internal disks and a low latency, highly
reliable, NFS mount. A complete copy of the metadata is stored in each directory;
in other words, the namenode mirrors the data between directories. For this reason,
the underlying disks need not be part of a RAID group, although some adminis-
trators choose to do so and forego specifying multiple directories in dfs.name.dir
(although an NFS mount should still be used, no matter what). The namenode
metadata is not excessively large; usually far below 1TB in size, although running
out of disk space is not something you want to occur.

HDFS | 93

www.it-ebooks.info

http://www.it-ebooks.info/

Idle spindle syndrome
When deploying homogeneous hardware, it’s not uncommon for
the machine running the namenode to have a large amount of un-
used disks in the system. This can also occur if the disk for
dfs.name.dir is a large RAID-5 group. All too often, administrators
are tempted to put this disk to so called good use and run a data-
node on the same machine. The next obvious thought is to run a
tasktracker so data can be processed locally. Now, the dedicated
hardware reserved for the namenode is running spiky workloads
that can impact its stability and performance. Do not fall victim to
idle spindle syndrome.

As if by some cruel joke, the default value of dfs.name.dir is hadoop.tmp.dir/dfs/
name and, when coupled with hadoop.tmp.dir’s default of /tmp/hadoop-
user.name, lands the filesystem metadata squarely in a volatile directory. Many new
to Hadoop have quickly setup Hadoop, missed setting dfs.name.dir, and found
themselves with an unusable filesystem after rebooting the namenode because /
tmp was cleared during boot. If there’s a single parameter that should be triple-
checked for correctness, it’s dfs.name.dir.

Example value: /data/1/dfs/nn,/data/2/dfs/nn,/data/3/dfs/nn. Used by: NN.

dfs.data.dir
While dfs.name.dir specifies the location of the namenode metadata,
dfs.data.dir is used to indicate where datanodes should store HDFS block data.
Also a comma separate list, rather than mirroring data to each directory specified,
the datanode round robins blocks between disks in an attempt to allocate blocks
evenly across all drives. The datanode assumes each directory specifies a separate
physical device in a JBOD group. As described earlier, by JBOD, we mean each
disk individually addressable by the OS, and formatted and mounted as a separate
mount point. Loss of a physical disk is not critical since replicas will exist on other
machines in the cluster.

Example value: /data/1/dfs/dn,/data/2/dfs/dn,/data/3/dfs/dn,/data/4/dfs/dn. Used
by: DN.

fs.checkpoint.dir
The fs.checkpoint.dir parameter specifies the comma separated list of directories
used by the secondary namenode in which to store filesystem metadata during a
checkpoint operation. If multiple directories are provided, the secondary name-
node mirrors the data in each directory the same way the namenode does. It is rare,
however, that multiple directories are given because the checkpoint data is transi-
ent and, if lost, is simply copied during the next checkpoint operation. Some ad-
ministrators treat the contents of this directory as a worst case scenario location
from which they can recover the namenode’s metadata. It is, after all, a valid copy
of the data required to restore a completely failed namenode. With that said, this

94 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

shouldn’t be treated as a true backup because it’s possible that the secondary
namenode could fail, leaving you without a backup at all.

Example value: /data/1/dfs/snn. Used by: SNN.

dfs.permissions.supergroup
Within HDFS, a designated group is given special privileges equivalent to being
the superuser. Users in the group specified by dfs.permissions.supergroup are
permitted to perform any filesystem operation. More specifically, all permission
checks will always return success for users in this group. By default, this is set to
the group supergroup which isn’t a common group in Linux so it’s unlikely that
users will be accidentally granted permissions they shouldn’t have although ad-
ministrators should change it if necessary. This privilege, just like root privileges
in Linux, should never be given to users used for every day activities.

Example value: hadoop. Used by: NN, clients.

Optimization and Tuning
io.file.buffer.size (core-site.xml)

Hadoop performs file IO operations all throughout the codebase. In many of these
instances, the property io.file.buffer.size is used as a general purpose buffer size.
Larger buffers tend to result in more efficient data transfer, either from disk or
during network operations, at the cost of increased memory consumption and
latency. This property should be set to a multiple of the system page size, defined
in bytes, and is 4KB by default. A value of 64KB (65536 bytes) is a good starting
point.

Example value: 65536. Used by: Clients, daemons.

dfs.balance.bandwidthPerSec
The HDFS balancer utility looks for over or underutilized datanodes in the cluster
and moves blocks between them in an effort to balance the distribution of blocks.
If the balancing operation were not rate limited, it would easily monopolize the
network leaving nothing for MapReduce jobs or data ingest. The dfs.balance.band
widthPerSec parameter specifies how much bandwidth each datanode is allowed
to used for balancing. The value is given in bytes which is unintuitive since network
bandwidth is always described in terms of bits so double check your math!

Unfortunately, as mentioned above, this parameter is used by each datanode to
control bandwidth and is read by the daemon at startup time. This prevents the
value from being specified by the administrator at the time the balancer is run.

Example value: Used by: DN.

dfs.block.size
A common misconception is that HDFS has a block size; this isn’t true. Instead,
each file has an associated block size which is determined when the file is initially
created. The dfs.block.size parameter determines the default block size for all

HDFS | 95

www.it-ebooks.info

http://www.it-ebooks.info/

newly created files. It doesn’t affect files that already exist in the filesystem and
clients sometimes override it when they have special information about the files
they’ll create.

The dfs.block.size parameter value is expressed in bytes and is 67108864 (64MB)
by default. The proper block size for a file depends on the data and how its pro-
cessed, but for most use cases, 134217728 (128MB) is a more appropriate default.
Hadoop MapReduce (specifically jobs that use input formats that subclass FileIn
putFormat) wind up with a map task for each block of the file(s) processed as part
of the job.1 This means the file block size can significantly impact the efficiency of
a MapReduce job for better or worse.

Example value: 134217728. Used by: Clients.

dfs.datanode.du.reserved
When the datanode reports the available disk capacity to the namenode, it will
report the sum of the unused capacity of all dfs.data.dir disks. Since
mapred.local.dir usually shares the same available disk space, there needs to be a
way to reserve disk space for MapReduce applications. The value of dfs.data
node.du.reserved specifies the amount of space, in bytes, to be reserved on each
disk in dfs.data.dir. No disk space is reserved, by default, meaning HDFS is al-
lowed to consume all available disk space on each data disk, at which point the
node becomes read only. Instead, it is adviseable to reserve at least 10GB per disk
for map task output by setting dfs.datanode.du.reserved to 10737418240. If the
average MapReduce job produces a significant amount of intermediate output
(again, this is map task output) or you have large disks (where each disk is greater
than 2TB), feel free to increase the amount of reserved capacity accordingly.

Example value: 10737418240. Used by: DN.

dfs.namenode.handler.count
The namenode has a pool of worker threads that are responsible for processing
RPC requests from clients as well as other cluster daemons. A larger number of
handlers (i.e. worker threads) means a greater capacity to handle concurrent heart-
beats from datanodes as well as metadata operations from clients. For larger clus-
ters, or clusters with a large number of clients, it’s usually necessary to increase
dfs.namename.handler.count from its default of 10. A general guideline for setting
dfs.namenode.handler.count is to make it the natural logarithm of the number of
cluster nodes, times 20 (as a whole number). If the previous sentence makes you
glaze over, use the following python snippet (where 200 is the number of nodes in
the cluster in question):

esammer:~ hadoop01$ python -c 'import math ; print int(math.log(200) * 20)'
105

1. This isn’t entirely true because MapReduce jobs operate on input splits—a logical window into a file—
not an HDFS block, directly. For details on how Hadoop MapReduce divides jobs into tasks, see the
section “FileInputFormat input splits” on page 238 of in Hadoop: The Definitive Guide (3rd ed).

96 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Symptoms of this being set too low include datanodes timing out or receiving con-
nection refused while trying to connect to the namenode, large namenode RPC
queue sizes, and possibly high RPC latency. Each of these symptoms can be the
effect of other problems, so it’s difficult to say a change to dfs.namename.han
dler.count will correct the problem, but it’s certainly something to check while
troubleshooting.

Example value: 105 based on a 200 node cluster. Used by: NN.

dfs.datanode.failed.volumes.tolerated
The default behavior of the datanode is to fail outright when any of its local disks
fail. With disk failures being relatively common in mid to large clusters, this isn’t
ideal. Loss of a datanode results in a drop in the observed replication factor and,
in turn, causes the namenode to instruct a datanode with another copy of the data
to replicate the data to recover. The dfs.datanode.failed.volumes.tolerated param-
eter specifies the number of disks that are permitted to die before failing the entire
datanode.

Many wonder why not tolerate the failure of all disks, deferring the failure of the
datanode until there are no functional disks left. This seems to make sense over an
infinite time frame, but in reality, administrators respond to failed disks much
sooner than the time it would take for all disks to fail from normal wear and tear.
This leaves only the case where all disks fail in relatively rapid succession; an
anomalous situation that should be invested immediately. In practice, a rapid fail-
ure of disks usually indicates a failure of the drive controller or a component
thereof. While rare, if disks begin failing in series in a short amount of time, the
best option is to isolate and fail the entire machine as soon as the pattern is detected.

The default value for dfs.datanode.failed.volumes.tolerated is 0 (zero) meaning
any disk failure results in a failure of the datanode. Administrators may set this to
a greater number to continue running in the face of a specified number of failures
although exercise caution; failures in excess of one or two disks in a short span of
time is probably indicative of a larger problem.

Example value: 1. Used by: DN.

dfs.hosts
Out of the box, all datanodes are permitted to connect to the namenode and join
the cluster. A datanode, upon its first connection to a namenode, captures the
namespace ID (a unique identifier generated for the filesystem at the time it’s for-
matted), and is immediately eligible to receive blocks. It is possible for adminis-
trators to specify a file that contains a list of hostnames of datanodes that are ex-
plicitly allowed to connect and join the cluster, in which case, all others are denied.
Those with stronger security requirements or who wish to explicitly control access
will want to use this feature.

The format of the file specified by dfs.hosts is a newline separated list of hostnames
or IP addresses, depending on how machines identify themselves to the cluster. See

HDFS | 97

www.it-ebooks.info

http://www.it-ebooks.info/

“Hostnames, DNS, and Identification” on page 57 for more information on host
identification.

Example value: /etc/hadoop/conf/dfs.hosts Used by: NN.

dfs.host.exclude
Similar to dfs.hosts, HDFS supports the notion of explicitly excluding machines
from the cluster by specifying a file that contains a newline separate list of host-
names or IP addresses. Host excludes are applied after includes, meaning that a
machine name that appears in both files is excluded. The dfs.host.exclude pa-
rameter does double duty in that it is also the method by which datanodes are
gracefully decommissioned. For information on the datanode decommissioning
process, see “Decommissioning a Datanode” on page 197.

Example value: /etc/hadoop/conf/dfs.hosts.exclude Used by: NN.

fs.trash.interval (core-site.xml)
Users invariably delete files accidentally (or worse, retroactively declare deletion
an accident). HDFS supports a trash feature, similar to that of most desktop op-
erating systems, that allows users to recover files that have been deleted. When
enabled, a file is moved to a special directory called .Trash in the user’s HDFS home
directory upon deletion rather than being removed immediately. The
fs.trash.interval specifies the amount of time (in minutes) the file is retained in
the .Trash directory prior to being permanently deleted from HDFS. Users are free
to move the file back out of the .Trash directory, as they would any other file, which
effectively restores the file. The default value of zero indicates that the trash feature
is disabled.

To be clear, there’s no magic in the trash function; deferring the delete operation
means that the space consumed by the file is still unavailable to new data until it
is permanently deleted. Users can explicitly empty the trash by running the
hadoop fs -expunge command or simply waiting the configured number of mi-
nutes. Files may be immediately deleted, skipping the trash altogether, by speci-
fying the -skipTrash argument to the hadoop fs -rm command.

Trash only supported by the command line tools
The current releases of Hadoop, the trash functionality is only sup-
ported by the command line tools. Applications built against the
HDFS APIs do not automatically get this functionality. Be sure and
warn application developers of this as it has claimed a number of
victims. There is discussion within the community about making
trash a server-side feature that applies to all clients equally, al-
though it hasn’t yet been done.

Example value: 1440 (24 hours). Used by: NN, clients.

98 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Formatting the Namenode
Before HDFS can be started, the namenode must be formatted. Formatting is a relatively
simple operation, performed once, that creates the initial filesystem metadata on the
namenode. The format command must be run as the OS user that you intend to be the
HDFS super user (see “HDFS” on page 153 for more information on users and security
in HDFS), on the namenode host, and after all dfs.name.dir directories have been cre-
ated with the proper permissions. When run, the format operation creates an empty
fsimage file, edit log, and a randomly generated storage ID. The first time datanodes
connect to a namenode, they adopt the storage ID and will refuse to connect to any
other namenode. Should you need to reformat the namenode, you must delete all data
on the datanodes as well, which includes this storage ID information.

Formatting is a destructive operation
When you format the namenode, a new filesystem is initialized. If you
reformat an existing namenode, not only is all existing metadata de-
stroyed, but any existing block data on datanodes will be permanently
orphaned and inaccessible. Exercise caution when performing a format
operation and make sure that you truly intend to do so.

To format a namenode, execute the hadoop namenode -format command, as shown in
Example 5-3.

Example 5-3. Formatting the namenode

[root@hadoop01 conf]# sudo -u hdfs hadoop namenode -format
12/07/30 11:43:49 INFO namenode.NameNode: STARTUP_MSG:
/**
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = hadoop01/10.20.186.239
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 2.0.0-cdh4.0.1
STARTUP_MSG: classpath = ...
STARTUP_MSG: build = ...
**/
Formatting using clusterid: CID-e9486a4a-0f72-4556-a846-138db5c1e81e
12/07/30 11:43:49 INFO util.HostsFileReader: Refreshing hosts (include/exclude) list
12/07/30 11:43:49 INFO blockmanagement.DatanodeManager: dfs.block.invalidate.limit=1000
12/07/30 11:43:49 INFO util.GSet: VM type = 64-bit
12/07/30 11:43:49 INFO util.GSet: 2% max memory = 17.77875 MB
12/07/30 11:43:49 INFO util.GSet: capacity = 2^21 = 2097152 entries
12/07/30 11:43:49 INFO util.GSet: recommended=2097152, actual=2097152
12/07/30 11:43:49 INFO blockmanagement.BlockManager: dfs.block.access.token.enable=false
12/07/30 11:43:49 INFO blockmanagement.BlockManager: defaultReplication = 3
12/07/30 11:43:49 INFO blockmanagement.BlockManager: maxReplication = 512
12/07/30 11:43:49 INFO blockmanagement.BlockManager: minReplication = 1
12/07/30 11:43:49 INFO blockmanagement.BlockManager: maxReplicationStreams = 2
12/07/30 11:43:49 INFO blockmanagement.BlockManager: shouldCheckForEnoughRacks = false
12/07/30 11:43:49 INFO blockmanagement.BlockManager: replicationRecheckInterval = 3000
12/07/30 11:43:50 INFO namenode.FSNamesystem: fsOwner = hdfs (auth:SIMPLE)

HDFS | 99

www.it-ebooks.info

http://www.it-ebooks.info/

12/07/30 11:43:50 INFO namenode.FSNamesystem: supergroup = supergroup
12/07/30 11:43:50 INFO namenode.FSNamesystem: isPermissionEnabled = true
12/07/30 11:43:50 INFO namenode.FSNamesystem: HA Enabled: false
12/07/30 11:43:50 INFO namenode.FSNamesystem: Append Enabled: true
12/07/30 11:43:50 INFO namenode.NameNode: Caching file names occuring more than 10 times
12/07/30 11:43:50 INFO namenode.NNStorage: Storage directory /data/1/hadoop/dfs/nn has ↵
 been successfully formatted.
12/07/30 11:43:50 INFO namenode.FSImage: Saving image file ↵
 /data/1/hadoop/dfs/nn/current/fsimage.ckpt_0000000000000000000 using no compression
12/07/30 11:43:50 INFO namenode.FSImage: Image file of size 119 saved in 0 seconds.
12/07/30 11:43:50 INFO namenode.NNStorageRetentionManager: Going to retain 1 images ↵
 with txid >= 0
12/07/30 11:43:50 INFO namenode.FileJournalManager: Purging logs older than 0
12/07/30 11:43:50 INFO namenode.NameNode: SHUTDOWN_MSG:
/**
SHUTDOWN_MSG: Shutting down NameNode at hadoop01/10.20.186.239
**/

Once the namenode has been formatted, you can start the HDFS daemons (see “Starting
and Stopping Processes with Init Scripts” on page 195).

Creating a /tmp Directory
Many applications in the Hadoop ecosystem expect to find a /tmp directory in HDFS.
Much like /tmp in Linux, application commonly write temporary files and directories
to this path while performing work. In order to be useful, this directory must be world
writable so any user can create files, although users should not be able to modify or
replace files they do not own. Set the permissions to 1777 (user read/write/execute,
group read/write/execute, other read/write/execute, and sticky bit set) on /tmp to make
this so. See Example 5-4.

Example 5-4. Creating /tmp in HDFS

[root@hadoop01 conf]# hadoop fs -ls /
[root@hadoop01 conf]# sudo -u hdfs hadoop fs -mkdir /tmp
[root@hadoop01 conf]# sudo -u hdfs hadoop fs -chmod 1777 /tmp
[root@hadoop01 conf]# hadoop fs -ls /
Found 1 items
drwxrwxrwt - hdfs supergroup 0 2012-07-30 11:52 /tmp

Namenode High Availability
As we’ve seen, any interruption in namenode service equates to an interruption in
HDFS service. For mission critical Hadoop clusters, this has been a major concern for
cluster administrators. Easily one of the most highly anticipated features of Hadoop
2.0.0 and CDH4, namenode high availability (HA or NN HA) enables either manual
or automatic failover in the face of system failures. There are a number of steps neces-
sary to enable HA, as well as a few dependencies that must first be satisfied.

100 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Property names and command line tools
Since namenode high availability is a feature of Apache Hadoop 2.0 and
CDH4, this section uses both the new configuration property names
and the new command line tools present in those versions.

First, an enterprise class, highly available, NFS filer should be configured to export a
volume capable of supporting the total size of the namenode metadata. This isn’t nec-
essarily different from the pre-HA days where it was recommended to keep a copy of
metadata on an NFS mount. If you have an existing cluster where you’ve already con-
figured this, you can reuse it for an HA configuration. Configuring and exporting NFS
volumes is generally vendor specific, so we’ll assume this has been done and the new
volume is available at /mnt/filer/namenode-shared on both namenodes. We’ll refer to
this as the shared edits directory. Typically, this volume should be mounted with the
options tcp, hard, intr, at least nfsvers=3, and whatever timeo and retrans values make
sense for your network. See man 5 nfs for more information on NFS mount options.
The shared edits directory should have the same permissions as any other namenode
metadata directory. See “Users, Groups, and Privileges” on page 60 for details.

If the shared edits path is not writable or becomes unavailable for any reason, the
namenode process will abort. This is notably different than dfs.name.dir where a failed
path is simply ignored. As this implies, if this path is inaccessible from both namenodes,
both will abort and HDFS will become unavailable, hence the recommendation for a
filer that is, itself, highly available. Remember that both namenode processes must be
able to both read and write to this path. The easiest way to accomplish this is to ensure
that the uid of the user the namenode process run as is the same on all namenodes.
While it’s a good policy to explicitly control the uid of system users so they’re the same
on servers in a data center, it’s a requirement when using shared filesystems such as this.

NFS Is a (Temporary) Pain
Having a dependency on NFS and a shared edits directory is painful for many. An effort
is underway to remove this dependency by adding a highly available journal service for
the transaction log. When complete, this journal service will optionally replace the
shared edits directory as a method of coordination between the namenodes in an HA
deployment. For more information on this work, see the JIRA HDFS-3077.

Using shared state on an NFS filer simplifies design, but creates a different problem;
coordinated access. It is possible that, in specific failure scenarios, a namenode could
become unavailable in a way where we can not know for sure if it is truly dead. When
this happens, it’s possible that the otherwise unreachable namenode continues to try
and write to the shared edits directory. It’s critical that this be prevented, as two pro-
cesses writing to the same set of files can easily lead to data corruption. In an automatic
failover configuration, this is further complicated by the fact that a human isn’t around

Namenode High Availability | 101

www.it-ebooks.info

https://issues.apache.org/jira/browse/HDFS-3077
http://www.it-ebooks.info/

to mediate such a situation. To enforce exclusive access to the shared state, HA systems
typically employ one or more fencing methods. How you fence a service depends greatly
on the service in question, so this is a common place custom scripts are used. Hadoop
support various fencing methods that must be configured (see “Fencing Op-
tions” on page 102) before HA will function.

The next step is to make the necessary configuration changes to the core-site.xml and
hdfs-site.xml files. This involves the creation of a logical name for the highly available
namenode service called the nameservice-id, the grouping of namenodes into that ser-
vice using logical namenode-ids, defining namenode properties like the RPC and HTTP
service ports, and configuring a set of fencing methods. All of this is required for both
manual and automatic failover scenarios.

No more secondary namenode
Remember that in an HA deployment, the standby (inactive) namenode
performs the work of the secondary namenode. See “Namenode High
Availability” on page 17 for more information.

Fencing Options
In order to prevent data corruption during a forced state transition (in other words,
when our partner dies and we must become active) a method of fencing is required.
This is because, in cases where the misbehaving namenode stops responding, it’s still
possible that it’s up and running and will attempt to write to the shared edits directory.
To prevent this, Hadoop allows administrators to decide the best way to fence off the
unhealthy namenode. Fencing methods are configurable, and normally, multiple dif-
ferent methods are specified in configuration. Each method listed is executed, in order,
until one of them succeeds. Generally, methods should be ordered with more polite
methods earlier and the severe options later. Typical fencing strategies in HA systems
include asking the partner to give up control gracefully (e.g. RPC calls or kill -15),
telling it stop forcefully (e.g. kill -9), killing power to the host (e.g. an RPC call to a
managed power distribution unit or IPMI management card to cut power to the host,
commonly called Shoot The Other Node In The Head or STONITH), or telling the
service containing the shared state to deny communication with the host (e.g. RPC calls
to an NFS filer asking it to block traffic to the host).

Confused? Do not pass go!
If an effective fencing strategy is not configured correctly it is possible
to corrupt shared state information in most HA data storage systems.
Hadoop is one of these systems. If the concepts behind HA and fencing
aren’t clear, take the time to do a little extra research. It will save you
countless hours, and possible data loss, down the road.

102 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Hadoop ships with one standard and two user-configurable fencing methods:
sshfence and shell. Before any user-defined fencing method is attempted, Hadoop will
attempt to use its own RPC mechanism to ask the active namenode to relinquish its
role. If that’s not possible, the user-defined fencing methods listed in dfs.ha.fenc
ing.methods (see dfs.ha.fencing.methods (required) on page 105) are used. The
sshfence method attempts to ssh into the active namenode host and kill the process
listening on the service port, as identified by the fuser command. For this to work, ssh
keys must be pre-configured for a user with sufficient privileges to kill the namenode
process. The private key must not require a passphrase, although it should be protected
by filesystem permissions such that only the HDFS super user can access it (usually this
is user hdfs). The sshfence method optionally takes a colon separated username and
port, surrounded by parenthesis, shown in Example 5-5.

Example 5-5. Specifying a custom username and port to the sshfence method

sshfence(someuser:port)

Failures due to down hosts
The sshfence method suffers from a conundrum. When the machine to
fence is down, it’s impossible to determine whether it’s truly down (and,
effectively, already fenced) or simply not responding. This is the classic
inability to differentiate a host down from a network partition, de-
scribed in “Network Partitions” on page 214. If the host to fence is
down, this method will declare that it failed to fence the node. As a
result, you must have a non-ssh based fencing method to fall back to.

The second fencing method is the shell method which, as you might expect, executes
an arbitrary shell command. This allows you to perform arbitrarily complex fencing
using IPMI, NFS filer level fencing, or other vendor specific functions. All Hadoop
configuration properties are available as environment variables to the shell script with
dots (“.”) replaced with underscores (“_”). Additionally, the special environment vari-
ables in Table 5-2 are also available for use.

Table 5-2. Fencing shell script environment variables

Variable

$target_host The host to be fenced.

$target_port The RPC port of the host to be fenced.

$target_address $target_host:$target_port

$target_nameserviceid The nameservice-id to which the namenode to fence belongs.

$target_namenodeid The namenode-id of the namenode to fence.

The script, along with any arguments, should be surrounded by parenthesis after the
method name. A closing parenthesis may not appear in the arguments, themselves. See

Namenode High Availability | 103

www.it-ebooks.info

http://www.it-ebooks.info/

Example 5-6 for an example of a fencing script invocation that makes use of some of
the environment variables from Table 5-2.

Example 5-6. Specifying a shell script and arguments to the shell fence method

shell(/some/path/to/a/script.py --namenode=$target_host --nameservice=$target_nameserviceid)

An exit code of zero from the shell script is used to indicate fencing was successful. Any
other status indicates failure, in which case further fencing methods are used. If all
fencing methods fail, no failover is performed and the take over is aborted. At this point,
human intervention is required because it’s unclear that taking over wouldn’t corrupt
the metadata.

The song that never ends...
The shell fencing method has no builtin provision for a timeout. If your
script never exits, for whatever reason, a take over will never happen
and you’ll have some clean up work to do by hand.

Basic Configuration
The following HA-related configuration properties exist, and should be set in hdfs-
site.xml except where otherwise indicated.

dfs.nameservices (required)
The dfs.nameservices parameter is used by both the namenode HA and federation
features. In the context of HA, this defines the logical name of the service being
provided by a pair of namenode IDs. The logical name can be anything you want,
and is analogous to a virtual IP (VIP). The value of this parameter will be used as
the authoritative name of the HDFS service in other parameters like
fs.defaultFS. Many of the other HA options refer to this as the nameservice-id.

Example: prod-analytics. Used by: NN, clients.

dfs.ha.namenodes.nameservice-id (required)
With the nameservice-id defined by dfs.nameservices, it’s now necessary to specify
which namenode-ids make up that service. The value of this parameter should be
a comma separated list of logical namenode names (note these are different than
the logical service name or nameservice-id). Currently, only two namenode-ids can
be specified. Like the nameservice-id, the namenode-ids can be any name you
choose, and will be used to define namenode specific configuration properties in
an HA pair of namenodes.

Example property name: dfs.ha.namenodes.prod-analytics, property value:
nn1,nn2. Used by: NN, clients.

dfs.namenode.rpc-address.nameservice-id.namenode-id (required)
This parameter specifies the colon separated hostname and port on which name
node-id should provide namenode RPC service for nameservice-id.

104 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Example property name: dfs.namenode.rpc-address.prod-analytics.nn1, prop-
erty value: hadoop01.mycompany.com:8020. Used by: NN, clients.

dfs.namenode.http-address.namesevice-id.namenode-id
Optionally, it is possible to specify the hostname and port for HTTP service for a
given namenode-id within nameservice-id.

Example property name: dfs.namenode.http-address.prod-analytics.nn1, prop-
erty value: hadoop01.mycompany.com:50070. Used by: NN.

dfs.namenode.shared.edits.dir (required)
Each namenode in an HA pair must have access to a shared filesystem defined by
this property. The active namenode will write transactions to this location while
the standby will constantly read and apply changes to its in-memory version of the
metadata. The value should be expressed in the form of a file:// URL.

Example: file:///mnt/namenode/prod-analytics-edits. Used by: NN.

dfs.client.failover.proxy.provider.nameservice-id (required)
When namenode HA is enabled, clients need a way to decide which namenode is
active and should be used. This property specifies the class name of the plugin to
use when locating the active namenode. Today, Hadoop only ships with a single
plugin, but it still must be specified explicitly. Like many of the HA properties, this
too supports specification by nameservice-id.

Example property name: dfs.client.failover.proxy.provider.prod-analytics,
property value: org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailover
ProxyProvider. Used by: Clients.

dfs.ha.fencing.methods (required)
This property specifies a new line−separated list of fencing methods. See “Fencing
Options” on page 102 for an explanation of the available options.

Example: sshfence(hdfs:22)

shell(/some/path/fence-nfs-filer.sh --host=$target_host)

shell(/some/path/pdu-controller.sh --disable-power --host=$target_host).
Used by: NN, ZKFC (see “Automatic Failover Configuration” on page 105).

Automatic Failover Configuration
By default, namenode HA requires manual failover to be performed by a human or
another outside system. If you’d rather not try and force an intern to stare at monitoring
software all day and flip a switch when something goes wrong, you can instead enable
support for automatic failover. Enabling automatic failover adds two new components
to the system:

Namenode High Availability | 105

www.it-ebooks.info

http://www.it-ebooks.info/

• Apache ZooKeeper

ZooKeeper is a separate Apache software project that provides a highly available
service for distributed locking, coordination, and configuration, and is required2

for an automatic failover HA deployment. It is included in CDH, although it’s a
separate package install.

• The ZooKeeper Failover Controller (ZKFC)

The ZKFC (or sometimes, simply the failover controller) is a separate daemon that
runs along side each namenode in an HA configuration that watches its health,
maintains ZooKeeper session information, and initiates state transitions and fenc-
ing when necessary. Already included with Hadoop, no additional software in-
stallation is necessary, although some configuration is required.

The following additional parameters must be configured in hdfs-site.xml for automatic
failover to function correctly.

dfs.ha.automatic-failover.enabled (required for automatic failover)
Setting this property to true instructs the startup scripts to additionally start the
failover controller process and manage namenode state transitions using Zoo-
Keeper for coordination. When this is enabled, you must also properly configure
the ha.zookeeper.quorum property to point at the ZooKeeper quorum that should
be used by the failover controller.

Optionally, you can use the property dfs.ha.automatic-failover.enabled.name
service-id to configure this on a per-nameservice-id basis, rather than globally.

Default value: false Example: true. Used by: NN, ZKFC, clients.

ha.zookeeper.quorum (core-site.xml, required for automatic failover)
When using the HDFS automatic failover feature, ZooKeeper must be properly
configured. This property specifies the nodes that make up the ZooKeeper quorum.
Each quorum member is a colon separated host port pair, and quorum members
are separated by commas. Since the availability of the namenode is dependent on
the availability of ZooKeeper in this configuration, a quorum of at least three nodes
should be used so that ZooKeeper itself is highly available.

Example: zk-node1:2181,zk-node2:2181,zk-node3:2181. Used by: ZKFC.

Initialzing ZooKeeper State

Before the failover controller will work, the necessary state in ZooKeeper must first be
initialized. Hadoop includes the hdfs zkfc -formatZK command (see Example 5-7) for
exactly this purpose. This command should be run as the HDFS super user (the user
with which you formatted HDFS) and assumes that ZooKeeper is up and running, and
all HA configuration is complete.

2. For more information about installing and configuring ZooKeeper, Apache Hadoop users can reference
the Apache ZooKeeper website. CDH users should reference Cloudera’s documentation portal.

106 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://zookeeper.apache.org
http://zookeeper.apache.org
https://ccp.cloudera.com/display/DOC/Documentation
http://www.it-ebooks.info/

Example 5-7. Initializing ZooKeeper for use with namenode high availability

[root@hadoop01 conf]# sudo -u hdfs hdfs zkfc -formatZK
12/07/19 17:22:37 INFO DFSZKFailoverController: Failover controller configured for ↵
 NameNode prod-analytics.hadoop01
12/07/19 17:22:38 INFO ZooKeeper: Client environment:↵
 zookeeper.version=3.4.3-cdh4.0.1--1, built on 06/29/2012 00:00 GMT
12/07/19 17:22:38 INFO ZooKeeper: Client environment:host.name=hadoop01
12/07/19 17:22:38 INFO ZooKeeper: Client environment:java.version=1.6.0_31
12/07/19 17:22:38 INFO ZooKeeper: Client environment:↵
 java.vendor=Sun Microsystems Inc.
12/07/19 17:22:38 INFO ZooKeeper: Client environment:↵
 java.home=/usr/java/jdk1.6.0_31/jre
12/07/19 17:22:38 INFO ZooKeeper: Client environment:java.class.path=...
12/07/19 17:22:38 INFO ZooKeeper: Client environment:↵
 java.library.path=//usr/lib/hadoop/lib/native
12/07/19 17:22:38 INFO ZooKeeper: Client environment:java.io.tmpdir=/tmp
12/07/19 17:22:38 INFO ZooKeeper: Client environment:↵
 java.compiler=<NA>
12/07/19 17:22:38 INFO ZooKeeper: Client environment:os.name=Linux
12/07/19 17:22:38 INFO ZooKeeper: Client environment:os.arch=amd64
12/07/19 17:22:38 INFO ZooKeeper: Client environment:↵
 os.version=2.6.32-220.el6.x86_64
12/07/19 17:22:38 INFO ZooKeeper: Client environment:user.name=hdfs
12/07/19 17:22:38 INFO ZooKeeper: Client environment:↵
 user.home=/var/lib/hadoop-hdfs
12/07/19 17:22:38 INFO ZooKeeper: Client environment:↵
 user.dir=/etc/hadoop/conf.empty
12/07/19 17:22:38 INFO ZooKeeper: Initiating client connection, ↵
 connectString=hadoop01:2181,hadoop02:2181 sessionTimeout=5000 watcher=null
12/07/19 17:22:38 INFO ClientCnxn: Opening socket connection to ↵
 server /10.1.1.131:2181
12/07/19 17:22:38 WARN ZooKeeperSaslClient: SecurityException: ↵
 java.lang.SecurityException: Unable to locate a login configuration occurred ↵
 when trying to find JAAS configuration.
12/07/19 17:22:38 INFO ZooKeeperSaslClient: Client will not SASL-authenticate ↵
 because the default JAAS configuration section 'Client' could not be found. ↵
 If you are not using SASL, you may ignore this. On the other hand, if you ↵
 expected SASL to work, please fix your JAAS configuration.
12/07/19 17:22:38 INFO ClientCnxn: Socket connection established to ↵
 hadoop01/10.1.1.131:2181, initiating session
12/07/19 17:22:38 INFO ClientCnxn: Session establishment complete on ↵
 server hadoop01/10.1.1.131:2181, sessionid = 0x138a1b2f1d20000, negotiated ↵
 timeout = 5000
12/07/19 17:22:38 INFO ActiveStandbyElector: Successfully created ↵
 /hadoop-ha/prod-analytics in ZK.
12/07/19 17:22:38 WARN ActiveStandbyElector: Ignoring stale result from old client ↵
 with sessionId 0x138a1b2f1d20000
12/07/19 17:22:38 INFO ZooKeeper: Session: 0x138a1b2f1d20000 closed
12/07/19 17:22:38 INFO ClientCnxn: EventThread shut down

Namenode High Availability | 107

www.it-ebooks.info

http://www.it-ebooks.info/

Format and Bootstrap the Namenodes
Pick one of the two namenodes to use as the primary namenode for the format and
bootstrap process. We’ll refer to the other namenode as the standby. Don’t worry about
which one you pick; this only matters for the initial setup. Format the primary name-
node using the standard hdfs namenode -format as you normally would in a non-HA
configuration, as in Example 5-8. This will format both the primary namenode’s local
directories and the shared edits directory.

Example 5-8. Formating a namenode for high availability

[root@hadoop-ha01 ~]# sudo -u hdfs hdfs namenode -format
12/07/25 11:37:46 INFO namenode.NameNode: STARTUP_MSG:
/**
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = hadoop-ha01/10.20.191.144
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 2.0.0-cdh4.0.1
STARTUP_MSG: classpath = ...
STARTUP_MSG: build = ...
**/
Formatting using clusterid: CID-4cd4303c-62bd-468b-8cc1-652e0b88a2ec
12/07/25 11:37:47 INFO util.HostsFileReader: Refreshing hosts (include/exclude) list
12/07/25 11:37:47 INFO blockmanagement.DatanodeManager: dfs.block.invalidate.limit=1000
12/07/25 11:37:47 INFO util.GSet: VM type = 64-bit
12/07/25 11:37:47 INFO util.GSet: 2% max memory = 17.77875 MB
12/07/25 11:37:47 INFO util.GSet: capacity = 2^21 = 2097152 entries
12/07/25 11:37:47 INFO util.GSet: recommended=2097152, actual=2097152
12/07/25 11:37:47 INFO blockmanagement.BlockManager: dfs.block.access.token.enable=false
12/07/25 11:37:47 INFO blockmanagement.BlockManager: defaultReplication = 3
12/07/25 11:37:47 INFO blockmanagement.BlockManager: maxReplication = 512
12/07/25 11:37:47 INFO blockmanagement.BlockManager: minReplication = 1
12/07/25 11:37:47 INFO blockmanagement.BlockManager: maxReplicationStreams = 2
12/07/25 11:37:47 INFO blockmanagement.BlockManager: shouldCheckForEnoughRacks = false
12/07/25 11:37:47 INFO blockmanagement.BlockManager: replicationRecheckInterval = 3000
12/07/25 11:37:47 INFO namenode.FSNamesystem: fsOwner = hdfs (auth:SIMPLE)
12/07/25 11:37:47 INFO namenode.FSNamesystem: supergroup = supergroup
12/07/25 11:37:47 INFO namenode.FSNamesystem: isPermissionEnabled = true
12/07/25 11:37:47 INFO namenode.FSNamesystem: Determined nameservice ID: prod-analytics
12/07/25 11:37:47 INFO namenode.FSNamesystem: HA Enabled: true
12/07/25 11:37:47 INFO namenode.FSNamesystem: Append Enabled: true
12/07/25 11:37:47 INFO namenode.NameNode: Caching file names occuring more than 10 times
12/07/25 11:37:48 INFO namenode.NNStorage: Storage directory /data/1/hadoop/dfs/nn has ↵
 been successfully formatted.
12/07/25 11:37:48 INFO namenode.NNStorage: Storage directory /mnt/namenode-shared has ↵
 been successfully formatted.
12/07/25 11:37:48 INFO namenode.FSImage: Saving image file ↵
 /data/1/hadoop/dfs/nn/current/fsimage.ckpt_0000000000000000000 using no compression
12/07/25 11:37:48 INFO namenode.FSImage: Image file of size 119 saved in 0 seconds.
12/07/25 11:37:48 INFO namenode.NNStorageRetentionManager: Going to retain 1 images ↵
 with txid >= 0
12/07/25 11:37:48 INFO namenode.FileJournalManager: Purging logs older than 0
12/07/25 11:37:48 INFO namenode.NameNode: SHUTDOWN_MSG:

108 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

/**
SHUTDOWN_MSG: Shutting down NameNode at hadoop-ha01/10.20.191.144
**/

The nameservice of the HA pair.

HA configuration has been detected and enabled.

A local directory being formatted for the namenode.

The shared edits directory being formatted.

The standby namenode needs to be bootstrapped with a copy of the metadata infor-
mation from the primary namenode. Without fail, there’s a command that automates
this process as well. The hdfs namenode -bootstrapStandby command works by con-
tacting the primary namenode and retrieving a copy of the metadata over the network.
For this to work, we must first start the primary namenode and make it active. There’s
nothing special to starting a namenode in an HA configuration. In Example 5-9 we just
use the init script.

Example 5-9. Starting the primary namenode

[root@hadoop-ha01 ~]# /etc/init.d/hadoop-hdfs-namenode start
Starting Hadoop namenode: [OK]
starting namenode, logging to /var/log/hadoop-hdfs/hadoop-hdfs-namenode-hadoop-ha01.out

By default, the namenode will start in standby state until it’s told to transition to an
active state by either an administrative command or the failover controller. See Exam-
ple 5-10 for an example of the typical namenode log output.

Example 5-10. Logs from a namenode starting in standby state

...
2012-07-25 11:53:50,128 INFO FSNamesystem: fsOwner = hdfs (auth:SIMPLE)
2012-07-25 11:53:50,128 INFO FSNamesystem: supergroup = supergroup
2012-07-25 11:53:50,128 INFO FSNamesystem: isPermissionEnabled = true
2012-07-25 11:53:50,129 INFO FSNamesystem: Determined nameservice ID: prod-analytics
2012-07-25 11:53:50,129 INFO FSNamesystem: HA Enabled: true
2012-07-25 11:53:50,131 INFO FSNamesystem: Append Enabled: true
2012-07-25 11:53:50,412 INFO NameNode: Caching file names occuring more than 10 times
2012-07-25 11:53:50,474 INFO Storage: Locking is disabled
2012-07-25 11:53:50,508 INFO FSImage: No edit log streams selected.
2012-07-25 11:53:50,515 INFO FSImage: Loading image file ↵
 /data/1/hadoop/dfs/nn/current/fsimage_0000000000000000000 using no compression
2012-07-25 11:53:50,516 INFO FSImage: Number of files = 1
2012-07-25 11:53:50,517 INFO FSImage: Number of files under construction = 0
2012-07-25 11:53:50,517 INFO FSImage: Image file of size 119 loaded in 0 seconds.
2012-07-25 11:53:50,517 INFO FSImage: Loaded image for txid 0 from ↵
 /data/1/hadoop/dfs/nn/current/fsimage_0000000000000000000
2012-07-25 11:53:50,522 INFO NameCache: initialized with 0 entries 0 lookups
2012-07-25 11:53:50,522 INFO FSNamesystem: Finished loading FSImage in 108 msecs
2012-07-25 11:53:50,756 INFO Server: Starting Socket Reader #1 for port 8020
2012-07-25 11:53:50,790 INFO FSNamesystem: Registered FSNamesystemState MBean
2012-07-25 11:53:50,813 INFO FSNamesystem: Number of blocks under construction: 0

Namenode High Availability | 109

www.it-ebooks.info

http://www.it-ebooks.info/

2012-07-25 11:53:50,813 INFO StateChange: STATE* Leaving safe mode after 0 secs.
2012-07-25 11:53:50,813 INFO StateChange: STATE* Network topology has 0 racks ↵
 and 0 datanodes
2012-07-25 11:53:50,813 INFO StateChange: STATE* UnderReplicatedBlocks has 0 blocks
2012-07-25 11:53:50,890 INFO log: Logging to ↵
 org.slf4j.impl.Log4jLoggerAdapter(org.mortbay.log) via org.mortbay.log.Slf4jLog
2012-07-25 11:53:50,943 INFO HttpServer: Added global filter 'safety' ↵
 (class=org.apache.hadoop.http.HttpServer$QuotingInputFilter)
2012-07-25 11:53:50,945 WARN StaticUserWebFilter: dfs.web.ugi should not be used. ↵
 Instead, use hadoop.http.staticuser.user.
2012-07-25 11:53:50,945 INFO HttpServer: Added filter static_user_filter ↵
 (class=org.apache.hadoop.http.lib.StaticUserWebFilter$StaticUserFilter) to ↵
 context WepAppsContext
2012-07-25 11:53:50,945 INFO HttpServer: Added filter static_user_filter ↵
 (class=org.apache.hadoop.http.lib.StaticUserWebFilter$StaticUserFilter) to ↵
 context logs
2012-07-25 11:53:50,946 INFO HttpServer: Added filter static_user_filter ↵
 (class=org.apache.hadoop.http.lib.StaticUserWebFilter$StaticUserFilter) to ↵
 context static
2012-07-25 11:53:50,958 INFO HttpServer: dfs.webhdfs.enabled = false
2012-07-25 11:53:50,974 INFO HttpServer: Jetty bound to port 50070
2012-07-25 11:53:50,974 INFO log: jetty-6.1.26.cloudera.1
2012-07-25 11:53:51,176 INFO log: Started SelectChannelConnector@0.0.0.0:50070
2012-07-25 11:53:51,176 INFO NameNode: Web-server up at: 0.0.0.0:50070
2012-07-25 11:53:51,176 INFO Server: IPC Server Responder: starting
2012-07-25 11:53:51,178 INFO Server: IPC Server listener on 8020: starting
2012-07-25 11:53:51,182 INFO NameNode: NameNode up at: hadoop-ha01/10.20.191.144:8020
2012-07-25 11:53:51,182 INFO FSNamesystem: Starting services required for standby state
2012-07-25 11:53:51,184 INFO EditLogTailer: Will roll logs on active node at ↵
 hadoop-ha02/10.20.191.145:8020 every 120 seconds.
2012-07-25 11:53:51,196 INFO StandbyCheckpointer: Starting standby checkpoint thread...

The namenode is up and running.

Standby services are started by default.

If you have configured automatic failover, you should now start the failover over con-
troller. It will connect to ZooKeeper, discover no other namenode is currently active,
see that the local process is healthy, and ask it to transition to active status. Exam-
ple 5-11 illustrates the process of starting the failover controller and a sample of its log
output.

Example 5-11. Starting the failover controller and confirming the namenode becomes active

[root@hadoop-ha01 ~]# /etc/init.d/hadoop-hdfs-zkfc start
Starting Hadoop zkfc: [OK]
starting zkfc, logging to /var/log/hadoop-hdfs/hadoop-hdfs-zkfc-hadoop-ha01.out
[root@hadoop-ha01 ~]# less /var/log/hadoop-hdfs/hadoop-hdfs-namenode-hadoop-ha01.log
...
2012-07-25 12:03:31,164 INFO FSNamesystem: Stopping services started for standby state
2012-07-25 12:03:31,165 WARN EditLogTailer: Edit log tailer interrupted
java.lang.InterruptedException: sleep interrupted
 at java.lang.Thread.sleep(Native Method)
 at org.apache.hadoop.hdfs.server.namenode.ha.EditLogTailer$EditLogTailerThread↵
 .doWork(EditLogTailer.java:329)

110 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

 at org.apache.hadoop.hdfs.server.namenode.ha.EditLogTailer$EditLogTailerThread↵
 .access$200(EditLogTailer.java:274)
 at org.apache.hadoop.hdfs.server.namenode.ha.EditLogTailer$EditLogTailerThread$1↵
 .run(EditLogTailer.java:291)
 at org.apache.hadoop.security.SecurityUtil.doAsLoginUserOrFatal(SecurityUtil.java:438)
 at org.apache.hadoop.hdfs.server.namenode.ha.EditLogTailer$EditLogTailerThread↵
 .run(EditLogTailer.java:287)
2012-07-25 12:03:31,166 INFO FSNamesystem: Starting services required for active state
2012-07-25 12:03:31,168 INFO FileJournalManager: Recovering unfinalized segments in ↵
 /mnt/namenode-shared/current
2012-07-25 12:03:31,168 INFO FileJournalManager: Recovering unfinalized segments in ↵
 /data/1/hadoop/dfs/nn/current
2012-07-25 12:03:31,168 INFO FSNamesystem: Catching up to latest edits from old active ↵
 before taking over writer role in edits logs.
2012-07-25 12:03:31,168 INFO FSNamesystem: Reprocessing replication and invalidation ↵
 queues...
2012-07-25 12:03:31,169 INFO DatanodeManager: Marking all datandoes as stale
2012-07-25 12:03:31,179 INFO BlockManager: Total number of blocks = 0
2012-07-25 12:03:31,179 INFO BlockManager: Number of invalid blocks = 0
2012-07-25 12:03:31,180 INFO BlockManager: Number of under-replicated blocks = 0
2012-07-25 12:03:31,180 INFO BlockManager: Number of over-replicated blocks = 0
2012-07-25 12:03:31,180 INFO BlockManager: Number of blocks being written = 0
2012-07-25 12:03:31,180 INFO FSNamesystem: Will take over writing edit logs at txnid 1
2012-07-25 12:03:31,180 INFO FSEditLog: Starting log segment at 1
2012-07-25 12:03:31,622 INFO FSEditLog: Number of transactions: 1 Total time for ↵
 transactions(ms): 1Number of transactions batched in Syncs: 0 Number of syncs: 1 ↵
 SyncTimes(ms): 259 125

Namenode receives a command to transition from standby to active and stops
standby services.

The thread that watches for changes in the edit log is interrupted. This is normal.

The namenode transitions to active and starts the necessary services.

If you have not configured automatic failover, you can manually activate the primary
namenode by running the command in Example 5-12. The arguments to the -fail
over command are the namenode that should be standby followed by the namenode
that should become active. It helps to remember the order by thinking “I want to tran-
sition from namenode A to B.” Refer to the namenode web user interface or log files to
confirm the transition completes successfully.

Example 5-12. Forcing failover using the haadmin command

[root@hadoop-ha01 ~]# sudo -u hdfs hdfs haadmin -failover hadoop-ha02 hadoop-ha01
Failover to NameNode at hadoop-ha01/10.20.191.144:8020 successful

From the standby namenode, run the hdfs namenode -bootstrapStandby command to
copy the necessary metadata from the active namenode, shown in Example 5-13.

Namenode High Availability | 111

www.it-ebooks.info

http://www.it-ebooks.info/

Example 5-13. Bootstrapping the standby namenode metadata

[root@hadoop-ha02 conf]# sudo -u hdfs hdfs namenode -bootstrapStandby
12/07/25 14:05:33 INFO namenode.NameNode: STARTUP_MSG:
/**
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = hadoop-ha02/10.20.191.145
STARTUP_MSG: args = [-bootstrapStandby]
STARTUP_MSG: version = 2.0.0-cdh4.0.1
STARTUP_MSG: classpath = ...
STARTUP_MSG: build = ...
**/
===
About to bootstrap Standby ID hadoop-ha02 from:
 Nameservice ID: prod-analytics
 Other Namenode ID: hadoop-ha01
 Other NN's HTTP address: hadoop-ha01:50070
 Other NN's IPC address: hadoop-ha01/10.20.191.144:8020
 Namespace ID: 299561556
 Block pool ID: BP-824539445-10.20.191.144-1343241467811
 Cluster ID: CID-4cd4303c-62bd-468b-8cc1-652e0b88a2ec
 Layout version: -40
===
Re-format filesystem in /data/1/hadoop/dfs/nn ? (Y or N) Y
12/07/25 14:05:47 INFO namenode.NNStorage: Storage directory /data/1/hadoop/dfs/nn ↵
 has been successfully formatted.
12/07/25 14:05:47 WARN namenode.EditLogInputStream: skipping 1048563 bytes at the end ↵
 of edit log '/mnt/namenode-shared/current/edits_0000000000000000001-0000000000000000001': ↵
 reached txid 1 out of 1
12/07/25 14:05:47 INFO namenode.TransferFsImage: Opening connection to ↵
 http://hadoop-ha01:50070/getimage?getimage=1&txid=0&storageInfo=-40:299561556:0:↵
 CID-4cd4303c-62bd-468b-8cc1-652e0b88a2ec
12/07/25 14:05:47 INFO namenode.TransferFsImage: Downloaded file ↵
 fsimage.ckpt_0000000000000000000 size 119 bytes.
12/07/25 14:05:47 INFO namenode.NameNode: SHUTDOWN_MSG:
/**
SHUTDOWN_MSG: Shutting down NameNode at hadoop-ha02/10.20.191.145
**/

Start the standby namenode and failover controller, if you have configured automatic
failover, as you did on the primary namenode. Check the web user interface of each
namenode; one should claim to be active and the other standby. To test that automatic
failover is working correctly, simply stop the active namenode process using the init
script or sending the process a kill signal. If you check the failover controller logs, you
should see it detect the change in health status and yield active status by removing its
lock in ZooKeeper. The standby namenode should detect this almost immediately and
take over the active role. To test manual failover if you’re not using automatic failover,
simply run the same command in Example 5-12 with the order of the namenodes
reversed.

112 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Namenode Federation
Federation is a feature new to Apache Hadoop 2.0 and CDH4, created to overcome the
limitation that all filesystem metadata must fit in memory. It differs from namenode
high availability (described in “Namenode High Availability” on page 100) in that
rather than a single namespace being served from one of two possible namenodes,
multiple namenodes each serve a different slice of a larger namespace. It’s possible to
enable either federation or high availability, or even both simultaneously. Sometimes,
federation is used to provide a different level of service to a slice of a global namespace.
For example, it may be necessary to tune garbage collection parameters or enable HA
for the path /hbase but not the rest of the namespace. Clients of HDFS use a specialized
plugin called ViewFS to view the logical, global namespace as a single entity. In other
words, a client is unaware that it may be talking to different namenodes when it accesses
different paths. In this way, federation is similar to Linux where there are physical
devices that are mounted at a given path using /etc/fstab.

As first glance, it doesn’t seem that federation is different from simply having multiple
discreet clusters, save for the client plugin to view them as a single logical namespace.
One of the major differentiating factors, however, is that each datanode in a federated
cluster stores blocks for each namenode. When each namenode is formated, it generates
a block pool in which block data associated with that namenode is stored. Each data-
node, in turn, stores data for multiple block pools, and communicates with each name-
node. When a namenode receives a heartbeat from a datanode, it learns about the total
space on the datanode consumed by other block pools, as well as non-HDFS data. The
rationale behind having all datanodes participate in all block pools rather than simply
having discreet clusters is that this achieves better total utilization of datanode capacity.
Instead, if we were to have a separate set of datanodes entirely for the heavily used
namenode A, datanodes for namenode B would be underutilized while namenode A
datanodes struggled to keep up with load.

Configuring HDFS for a federated deployment for a new cluster is straight forward.
First, a logical nameservice-id is configured for each namenode that will participate in
the federated namespace, using the dfs.nameservices property in hdfs-site.xml. Each
nameservice-id can be either a single namenode-id, as is commonly the case in federa-
tion, or a pair of namenode-ids, for a highly available deployment. For now, we’ll focus
solely on the federation configuration. Datanodes send heartbeats to all nameservice-
ids listed in dfs.nameservices. Next, each nameservice-id is mapped to a host and RPC
port by way of the dfs.namenode.rpc-address.nameservice-id property. This is how a
logical nameservice is bound to a physical host. Other options exist that effect name-
node behavior. Example 5-14 contains an hdfs-site.xml file with a federated cluster with
two namenodes.

Namenode Federation | 113

www.it-ebooks.info

http://www.it-ebooks.info/

Example 5-14. HDFS configuration for a federated cluster

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

 <!-- Generic HDFS configuration properties... -->

 <!--
 Two namespaces defined: nn01 and nn02. Datanodes will store
 blocks for both.
 -->
 <property>
 <name>dfs.nameservices</name>
 <value>nn01,nn02</value>
 </property>

 <!-- Bind nn01 to hadoop-fed01.mycompany.com, port 8020. -->
 <property>
 <name>dfs.namenode.rpc-address.nn01</name>
 <value>hadoop-fed01.mycompany.com:8020</value>
 </property>

 <!-- Bind nn02 to hadoop-fed02.mycompany.com, port 8020. -->
 <property>
 <name>dfs.namenode.rpc-address.nn02</name>
 <value>hadoop-fed02.mycompany.com:8020</value>
 </property>

 <!--
 The list of directories in which each namenode will store
 its metadata.
 -->
 <property>
 <name>dfs.name.dir</name>
 <value>/data/1/hadoop/dfs/nn,/data/2/hadoop/dfs/nn</value>
 </property>

</configuration>

Once the configuration files have been updated and distributed to all hosts, each
namenode must be formatted. Formatting a namenode in a federated cluster is the same
as in a single namenode configuration, with the exception that each namenode must
have the same cluster-id. A cluster-id is a unique identifier that distinguishes one logical
cluster from another. If a cluster-id is not provided at the time a namenode is formatted,
one is randomly generated for you. You can choose to come up with a unique cluster-
id and format each namenode with it, or format the first namenode without a specified
cluster-id and reuse it when formatting additional namenodes. In our examples, we’ll
specify a cluster-id of prod-analytics explicitly, but you can use whatever you want.
Remember that the user that formats the namenode becomes the HDFS super user. In

114 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

Example 5-15, we run the format command using sudo -u hdfs so user hdfs becomes
the super user.

Example 5-15. Formatting a namenode with a specific cluster-id

[root@hadoop-fed01 ~]# sudo -u hdfs hdfs namenode -format -clusterID prod-analytics
12/07/23 15:59:24 INFO namenode.NameNode: STARTUP_MSG:
/**
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = hadoop-fed01/10.20.195.236
STARTUP_MSG: args = [-format, -clusterID, prod-analytics]
STARTUP_MSG: version = 2.0.0-cdh4.0.1
STARTUP_MSG: classpath = ...
STARTUP_MSG: build = ...
**/
Formatting using clusterid: prod-analytics
12/07/23 15:59:24 INFO util.HostsFileReader: Refreshing hosts (include/exclude) list
12/07/23 15:59:24 INFO blockmanagement.DatanodeManager: dfs.block.invalidate.limit=1000
12/07/23 15:59:24 INFO util.GSet: VM type = 64-bit
12/07/23 15:59:24 INFO util.GSet: 2% max memory = 17.77875 MB
12/07/23 15:59:24 INFO util.GSet: capacity = 2^21 = 2097152 entries
12/07/23 15:59:24 INFO util.GSet: recommended=2097152, actual=2097152
12/07/23 15:59:24 INFO blockmanagement.BlockManager: dfs.block.access.token.enable=false
12/07/23 15:59:24 INFO blockmanagement.BlockManager: defaultReplication = 3
12/07/23 15:59:24 INFO blockmanagement.BlockManager: maxReplication = 512
12/07/23 15:59:24 INFO blockmanagement.BlockManager: minReplication = 1
12/07/23 15:59:24 INFO blockmanagement.BlockManager: maxReplicationStreams = 2
12/07/23 15:59:24 INFO blockmanagement.BlockManager: shouldCheckForEnoughRacks = false
12/07/23 15:59:24 INFO blockmanagement.BlockManager: replicationRecheckInterval = 3000
12/07/23 15:59:24 INFO namenode.FSNamesystem: fsOwner = hdfs (auth:SIMPLE)
12/07/23 15:59:24 INFO namenode.FSNamesystem: supergroup = supergroup
12/07/23 15:59:24 INFO namenode.FSNamesystem: isPermissionEnabled = true
12/07/23 15:59:24 INFO namenode.FSNamesystem: Determined nameservice ID: nn01
12/07/23 15:59:24 INFO namenode.FSNamesystem: HA Enabled: false
12/07/23 15:59:24 INFO namenode.FSNamesystem: Append Enabled: true
12/07/23 16:14:06 INFO namenode.NameNode: Caching file names occuring more than 10 times
12/07/23 16:14:06 INFO namenode.NNStorage: Storage directory /data/1/hadoop/dfs/nn ↵
 has been successfully formatted.
12/07/23 16:14:06 INFO namenode.NNStorage: Storage directory /data/2/hadoop/dfs/nn ↵
 has been successfully formatted.
12/07/23 16:14:06 INFO namenode.FSImage: Saving image file ↵
 /data/2/hadoop/dfs/nn/current/fsimage.ckpt_0000000000000000000 using no compression
12/07/23 16:14:06 INFO namenode.FSImage: Saving image file ↵
 /data/1/hadoop/dfs/nn/current/fsimage.ckpt_0000000000000000000 using no compression
12/07/23 16:14:06 INFO namenode.FSImage: Image file of size 119 saved in 0 seconds.
12/07/23 16:14:06 INFO namenode.FSImage: Image file of size 119 saved in 0 seconds.
12/07/23 16:14:07 INFO namenode.NNStorageRetentionManager: Going to retain 1 images ↵
 with txid >= 0
12/07/23 16:14:07 INFO namenode.FileJournalManager: Purging logs older than 0
12/07/23 16:14:07 INFO namenode.FileJournalManager: Purging logs older than 0
12/07/23 16:14:07 INFO namenode.NameNode: SHUTDOWN_MSG:

/**
SHUTDOWN_MSG: Shutting down NameNode at hadoop-fed01/10.20.195.236
**/

Namenode Federation | 115

www.it-ebooks.info

http://www.it-ebooks.info/

At this point, start the namenodes and datanodes, and verify that all datanodes are
communicating with each namenode. Each namenode has two primary URLs: one that
shows the view of the namespace managed by that namenode, and an aggregate cluster
view that shows all namenodes that make up the cluster. The namenode view, available
at the URL http://mynamenode.mycompany.com:50070/dfshealth.jsp (Figure 5-1), dis-
plays information about the slice of the namespace handled by that specific namenode.
The page at http://mynamenode.mycompany.com:50070/dfsclusterhealth.jsp (Fig-
ure 5-2) shows only an aggregate view of each namenode, the number of datanodes
connected to it, and total capacity. The cluster level view is useful for getting an overall
picture of a federated cluster and is the same on all namenodes.

Figure 5-1. Federated namenode—single namenode view

From any one of the configured machines in the cluster, test operations against each
namenode using the hdfs dfs commands. Since the cluster is federated (and we haven’t
yet configured ViewFS), you’ll need to specify the namenode to talk to when executing

116 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

each command using its hostname and port. In Example 5-16, we generate a one gig-
abyte file and copy it into the two separate filesystem namespaces.

Figure 5-2. Federated namenode—cluster view

Example 5-16. Verifying HDFS federation functionality

generate around 1GB of junk to play with
[root@hadoop-fed02 conf]# dd if=/dev/zero of=1gb-junk bs=1024 count=$((1024 * 1024))
put a copy in the slice managed by hadoop-fed01
[root@hadoop-fed02 conf]# sudo -u hdfs hdfs dfs -put 1gb-junk \
 hdfs://hadoop-fed01:8020/1gb-junk-01
put two copies in the slice managed by hadoop-fed02
[root@hadoop-fed02 conf]# sudo -u hdfs hdfs dfs -put 1gb-junk \
 hdfs://hadoop-fed02:8020/1gb-junk-02
[root@hadoop-fed02 conf]# sudo -u hdfs hdfs dfs -put 1gb-junk \
 hdfs://hadoop-fed02:8020/1gb-junk-02.2
now prove to ourselves that each namenode only sees the files we expect
[root@hadoop-fed02 conf]# sudo -u hdfs hdfs dfs -ls hdfs://hadoop-fed01:8020/
Found 1 items

Namenode Federation | 117

www.it-ebooks.info

http://www.it-ebooks.info/

-rw-r--r-- 3 hdfs supergroup 1073741824 2012-07-23 17:52 ↵
 hdfs://hadoop-fed01:8020/1gb-junk-01
[root@hadoop-fed02 conf]# sudo -u hdfs hdfs dfs -ls hdfs://hadoop-fed02:8020/
Found 2 items
-rw-r--r-- 3 hdfs supergroup 1073741824 2012-07-23 17:52 ↵
 hdfs://hadoop-fed02:8020/1gb-junk-02
-rw-r--r-- 3 hdfs supergroup 1073741824 2012-07-23 17:53 ↵
 hdfs://hadoop-fed02:8020/1gb-junk-02.2

If we now return to the cluster view, we’ll see that one of our namenodes has twice as
much data as the other (Figure 5-3). Note that, because we have two datanodes, each
block can only be replicated twice. Namenode hadoop-fed01 should be managing one
file and around 2GB of raw data, and hadoop-fed02 two files of 4GB of raw data. A
total of 6GB of HDFS space is consumed on the entire cluster.

Figure 5-3. Federated namenode—after copying data into HDFS

118 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

If you look closely at Figures 5-2 and 5-3, you’ll notice that the order in
which the namenodes are listed is not necessarily the same between page
loads. Make sure you’re looking at the namenode you think you are
when you load the page!

Client applications are free to access each namenode by name, as we did above, in a
federated cluster. However, this means that each client needs to know which namen-
odes are responsible for which slices of the global namespace. In fact, nothing yet de-
fines the global namespace. As far as clients are concerned, each namenode still looks
like a separate HDFS cluster. The missing piece of the configuration puzzle is to con-
figure ViewFS, and define which paths map to which namenodes.

Clients know to use ViewFS by the URL scheme used in the fs.defaultFS parameter.
By setting this to viewfs:///, clients will load the ViewFS filesystem plugin which, in turn,
will then look for mount table information within the configuration. The mount table
is what defines the path to namenode mapping, much like the Linux /etc/fstab file, and
should be relatively self explanatory. It’s possible to define multiple mount tables, each
with different mapping information, and specify the mount table name using the
fs.defaultFS URL of viewfs://table-name/. Omitting the table-name in the URL indi-
cates the default mount table should be used.

Defining a mount table is done in the core-site.xml file. All mount table options are
prefixed with the property name fs.viewfs.mounttable.table-name. The default mount
table name is simply default, shown in Example 5-17.

Example 5-17. Client ViewFS mount table configuration

<?xml version="1.0"?>

<configuration>

 <!-- Typical core-site.xml configuration properties... -->

 <!-- Clients should use the default ViewFS mount table. -->
 <property>
 <name>fs.defaultFS</name>
 <value>viewfs:///</value>
 </property>

 <!-- Map /a to hadoop-fed01.mycompany.com:8020/ -->
 <property>
 <name>fs.viewfs.mounttable.default.link./a</name>
 <value>hdfs://hadoop-fed01.mycompany.com:8020/</value>
 </property>

 <!-- Map /b to hadoop-fed02.mycompany.com:8020/ -->
 <property>
 <name>fs.viewfs.mounttable.default.link./b</name>
 <value>hdfs://hadoop-fed02.mycompany.com:8020/</value>
 </property>

Namenode Federation | 119

www.it-ebooks.info

http://www.it-ebooks.info/

 <!-- Additional mounts... -->

</configuration>

Overlapping mounts
In Linux-like operating systems, it’s possible to have overlapping mount
points. For instance, one can have one mount point at /var and a second
mount at /var/log. This is not currently supported in a federated cluster.

Using the same federated pair of namenodes we set up earlier and the configuration
from Example 5-17, let’s now run some simple tests to confirm everything is working
as expected.

Example 5-18. Testing a ViewFS client

[root@hadoop-fed01 conf]# hdfs dfs -ls /a
Found 1 items
-rw-r--r-- 3 hdfs supergroup 1073741824 2012-07-23 17:52 /a/1gb-junk-01
[root@hadoop-fed01 conf]# hdfs dfs -ls /b
Found 2 items
-rw-r--r-- 3 hdfs supergroup 1073741824 2012-07-23 17:52 /b/1gb-junk-02
-rw-r--r-- 3 hdfs supergroup 1073741824 2012-07-23 17:53 /b/1gb-junk-02.2

In Example 5-18, we see the test files we wrote to HDFS earlier. The files written to the
host hadoop-fed01 in the root directory appear under /a while the files from hadoop-
fed02 appear under /b because of the mapping table we’ve created. Clients no longer
need to know which paths should be written to which namenodes, or even that multiple
namenodes exist.

MapReduce
The following properties should be set in the mapred-site.xml file unless otherwise
indicated. The format of mapred-site.xml is discussed in “The Hadoop XML Configu-
ration Files” on page 87.

Identification and Location
mapred.job.tracker

Just as dfs.name.dir indicates the location of the namenode to datanodes and cli-
ents, mapred.job.tracker provides the same for tasktrackers and MapReduce cli-
ents. The mapred.job.tracker parameter is a hostname (or IP address) and port
pair on which the jobtracker listens for RPC communication. For clients, it pro-
vides a method to quickly identify the proper machine to speak to in order to
interact with the MapReduce framework.

The default value of mapred.job.tracker is the special string “local” which indicates
the client is running in what is called local mode. In local mode, the client runs the

120 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

entire MapReduce framework, albeit singly threaded, in the VM of the client itself.
This is mostly useful in development and debugging scenarios and doesn’t provide
any of Hadoop’s parallelism or fault tolerance. Additionally, when operating in
local mode, clients do not use HDFS. Instead, all filesystem operations operate
against the local host filesystem; the equivalent of having set fs.default.name to
the value file:///. Due to the default value being the special string “local,” there is
no meaningful default port specified. The de facto standard port used in
mapred.job.tracker is 8021, or one port higher than that of the namenode’s port.
Administrators, of course, are free to specify any value with the caveat of having
deviated from what most reference material uses.

Example value: hadoop01.sf.cloudera.com:8021. Used by: JT, TT, clients.

mapred.local.dir
As described in Chapter 3, map tasks in a MapReduce job use the machine’s local
disk to store their intermediate output. The directories used are those specified by
mapred.local.dir. As with dfs.data.dir for the HDFS datanode,
mapred.local.dir supports the specification of a comma separated list of local fil-
esystem directories with the assumption that each directory is a separate disk. Pro-
viding more than one directory allows map tasks to spread IO across multiple
devices, thereby reducing a potential bottleneck in the processing pipeline.

There has been debate in the Hadoop community over whether
mapred.local.dir and dfs.data.dir should share disks. The argument for sharing
disks is that IO is spread over a greater number of spindles, some of which may
not be currently doing IO on behalf of the datanode. Disk space utilization is higher
as, if the cluster doesn’t execute MapReduce jobs constantly, reserving complete
disks for map output would mean they go largely unused. More spindles generally
means greater throughput when operations are independent (which map tasks are).
The downside to this is that, if the datanode is using the disks, reading or writing
intermediate map output to the same device competes with the predictable se-
quential IO pattern of HDFS block reads or writes effectively creating random IO
patterns. This interleaved IO effect can dramatically impact the performance of the
map task outputting the data, any datanode operations during that time, and the
reducers that are retrieving the map output during the shuffle phase. It’s worth
mentioning that the Linux kernel has some tricks for dealing with this kind of
situation that involve how IO is scheduled, but it won’t completely alleviate the
pain.

If you choose to reserve dedicated disks for mapred.local.dir, there’s no need to
reserve disk space using dfs.datanode.du.reserved because the disks specified by
dfs.data.dir would have exclusive use of the underlying disks. How many disks
you reserve depends on how much map output each node needs to contend with.
A more concrete example, given twelve 2TB disks in a worker node, ten disks may
be used for the datanode while two are reserved for map output. If the machine is

MapReduce | 121

www.it-ebooks.info

http://www.it-ebooks.info/

executing 12 map tasks, map output is being written to two disks, while reads are
coming from ten.

Reserving disks for mapred.local.dir makes sense if you know a lot about the jobs
that run and what they do, allowing for the proper allocation of intermediate data
storage versus HDFS block data storage. Those new to Hadoop, have evolving
needs, have ad-hoc analysis workloads, or who provide a large multitenant cluster
as a service to a large organization, may find it makes more sense to share disks
between intermediate and block data.

Example value: /data/1/mapred/local, /data/2/mapred/local. Used by: JT, TT.

Optimization and Tuning
mapred.java.child.opts

When the tasktracker launches child tasks, it does so in a separate JVM process.
Administrators and developers can control the options passed to the java exe-
cutable when it’s launched. This is primarily useful to control the JVM heap size,
garbage collection options, Java native library search paths, and JVM instrumen-
tation agent settings. By far, the most common settings are related to the JVM
memory footprint, though.

While not a definitive reference on the Oracle HotSpot VM, the options in Ta-
ble 5-3 are the most commonly used.

Table 5-3. Common Oracle HotSpot JVM Options

Option Description

-XmxNu Set the maximum JVM heap size where N is a number and
u is the unit it represents. Valid values for u are k for kilo-
bytes, m for megabytes, and g for gigabytes. If u is not
specified, the value is in bytes.

-XmsNu Set the initial JVM heap size. Some users choose to set the
initial heap size when they know they will immediately
allocate a large chunk of RAM and they’d rather do it up
front. The values for N and u are the same as above.

-Dproperty=value Set application specific Java system properties such as
garbage collection options.

The default value of mapred.child.java.opts is set to -Xmx200m
which is far too small for almost any type of data processing. Nor-
mal values range from 1GB to 4GB with the median value around
2GB.

Example value: -Xmx2g. Used by: Child tasks.

122 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

mapred.child.ulimit
In addition to setting the maximum heap size of the child task JVM in
mapred.child.java.opts, it is possible to impose a limit on the amount of virtual
memory a task is permitted to consume using standard process limits (on Linux,
see man 2 getrlimit). This imposes a limit on how much virtual memory a process
may consume before it is terminated. Virtual memory, in this context, is the address
space of the process, meaning it includes physical memory, secondary storage such
as swap, and resources like mmap()ed files. The value of mapred.child.ulimit is
expressed in kilobytes and must be large enough to include the child JVM process.
As a baseline, it should be roughly 1.5 times the size of the JVM max heap size so,
for a 1GB heap size, a value of 1572864 (1.5GB or 1572864KB) would be
appropriate.

Why Both mapred.child.java.opts and mapred.child.ulimit?
If the JVM memory consumption is limited by the maximum heap size, it may not
be obvious why additional control is required over the process virtual memory
limit. The problem is that the child JVM can, in turn, create additional processes
which would not be limited by the heap size of the child itself. This is exactly how
Hadoop Streaming - an API that permits non-Java mappers and reducers to be
written and executed in Hadoop MapReduce - works; a user supplied script or
program is created and executed under the control of the child JVM. The resource
limitation imposed on the child JVM is inherited by any processes it creates which
means administrators can exercise reasonable control over the total resources con-
sumed on the cluster.

Example value: 1572864. Used by: Child tasks.

mapred.tasktracker.map.tasks.maximum and mapred.tasktracker.reduce.tasks.maxi
mum

Each worker node in the cluster is configured with a maximum number of simul-
taneous map and reduce tasks it is capable of running in parallel. In an effort to
control resource consumption, administrators can specify the number of each type
of task independently. The reason for the two types of tasks having independent
configuration is because they use the machine differently; map tasks have a data
locality preference and use the network as little as possible, while reduce tasks have
no locality preference and must always fetch their input over the network before
processing it.

It is critical to understand that Hadoop MapReduce will run up to the sum of
mapred.tasktracker.map.tasks.maximum and mapred.tasktracker.reduce
.tasks.maximum tasks concurrently. Each task is run in a separate JVM with a max
heap size commonly between 1GB and 4GB, depending on the type of jobs being
executed (which is configured via mapred.child.java.opts). For example, setting
mapred.tasktracker.map.tasks.maximum to 12 and mapred.child.java.opts to

MapReduce | 123

www.it-ebooks.info

http://www.it-ebooks.info/

-Xmx2g will result in at up to 24GB of RAM (plus some additional overhead for
non-heap memory pools in the JVM) being used on the worker node just for map
tasks. Each task also performs HDFS IO (most of which should be local) to read
input and local disk IO for map task intermediate output so a sufficient number
of drives and controller bandwidth is also required.

Oversubscribing the machine’s CPU and disk IO will lead to degraded perfor-
mance, but shouldn’t cause outright failure of tasks while oversubscription of
memory is far worse. If a worker node starts swapping performance will immedi-
ately and severely suffer. Imagine 12 tasks, each of which requires 4GB of RAM
executing concurrently on a machine with 16GB of RAM and having to contend
with one another for a single swap partition. It’s possible that all tasks slow so
much that they time out causing them to fail and be retried later. If the pattern of
swapping and time out continues, tasks can exhaust their maximum number of
retries causing the job to fail.

So where do you start when configuring the number of tasks for a machine? Start
with a baseline configuration of one and a half tasks for each physical CPU core
(rounded up the nearest whole number), assuming the balanced hardware config-
uration from “Worker Hardware Selection” on page 48, and adjust based on the
observed behavior of the jobs that are commonly run. For example, with 12 phys-
ical cores, we would multiply 12 by 1.5 for 18 tasks total. Dividing these tasks by
map and reduce slots can also be tricky. Again, as a baseline, start with roughly
two thirds allocated to map task slots and the remaining one third as reduce task
slots, or given our working example, 12 and 6, respectively (rounded up from 11.88
and 5.94).

Example value for mapred.tasktracker.map.tasks.maximum: 12, mapred.task
tracker.reduce.tasks.maximum: 6. Used by: TT.

io.sort.mb
As map tasks produce output, it is stored in an in-memory circular buffer rather
than being written directly to disk. The size of this buffer is controlled by the
io.sort.mb parameter. When this buffer fills to a configured percentage (80% by
default), a background thread begins spilling the contents of the buffer to disk in
the directories specified by mapred.local.dir. If there are multiple
mapred.local.dir directories, the map task will cycle through them in a round robin
fashion. Prior to spilling to disk, this where the map output is partitioned and sorted
by key. When the map task is complete, there may be many of these spill files.
These files, which are already sorted by key, are merged into larger files and served
to reducers by the tasktracker.

The value of io.sort.mb is specified in megabytes and, by default, is 100. Increasing
the size of this buffer results in fewer spills to disk and, as a consequence, reduces
the number of spill files that must be merged when the map task completes. The
io.sort.mb parameter is one way administrators and job developers can trade more
memory for reduced disk IO. The downside of this is that this buffer must be

124 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

contained within the child task’s JVM heap allocation, as defined by
mapred.child.java.opts. For example, with a child heap size of 1GB and
io.sort.mb set to 128, only 896MB is really available to the user’s code.

For a 1GB child heap size, io.sort.mb can be set to 128MB as a baseline. Observe
the average MapReduce job and note the amount of map output records versus the
number of spilled records; if the latter is significantly higher than the former, it may
be an indication that io.sort.mb should be increased. Bear in mind that developers
can always override io.sort.mb at the job level (which is why it should not be
marked as final), so if only a subset of jobs require special tuning, consider han-
dling it that way. Remember that ultimately, all records output by map tasks must
be spilled so, in the ideal scenario, these numbers are equal.

Example value: 128. Used by: Child tasks.

io.sort.factor
The sister parameter to io.sort.mb is io.sort.factor which defines the number of
files to merge at once. There are two cases where files are merged in MapReduce:
when a map task completes, spill files are merged, and after reducers have retrieved
all map task output files and before the user reduce code is invoked. Both of these
stages are part of the sort and shuffle phase of MapReduce.

To understand the merge operation, consider the example where we have a map
task creating many spill files, each sorted by key. In order to reassemble the files
into a single sorted file, we open some number of files (defined by io.sort.fac
tor), and begin the iterative process of comparing the heads of the streams, picking
the lowest key, and writing the result to a new file. This process is repeated until
all streams are exhausted and a single new file contains the merged contents of the
other files. At the end of each merge round, we check to see if there are more files
and, if so, the entire process starts over.

Increasing the number of files merged in a single pass reduces the number of times
data is read and written back to disk which, in turn, reduces disk IO. Of course,
merging more files at once means using more memory so, like most things, there’s
a tradeoff to consider. With a child heap size greater than or equal to 1GB, start
with io.sort.factor set to 64 when processing large datasets. If you observe a large
amount of local disk IO during the sort and shuffle phase, it may be due to excessive
merge rounds. The child task logs contain merge information at the INFO severity
level.

Example value: 64. Used by: Child tasks.

mapred.compress.map.output
When the output of map tasks is spilled to disk, it is uncompressed by default.
Enabling map output compression can significantly reduce the amount of disk IO
as well as the amount of data that must be transferred across the network during
the shuffle phase of a MapReduce job. Compression is a way of trading CPU time
for disk IO because compression requires additional CPU cycles during both com-
pression and decompression. If monitoring data shows that there is available CPU

MapReduce | 125

www.it-ebooks.info

http://www.it-ebooks.info/

capacity during the sort and shuffle phase and the job is primarily bound by either
network bandwidth or disk IO, enabling compression is almost certainly a win.

The compression algorithm or codec used to compress the map output is defined
by the mapred.map.output.compression.codec parameter. Since map output need
not be splittable, it is not important to select a compression codec that exhibits
such a property. This leaves administrators and developers to select more or less
aggressive compression codecs based on the resource consumption and state of the
cluster. This parameter may be specified at the job level.

Example value: true. Used by: Child map tasks.

mapred.map.output.compression.codec
Hadoop MapReduce supports pluggable compression codecs or algorithms im-
plemented as Java classes. The mapred.map.output.compression.codec is used to
specify the codec that should be used to compress map output in MapReduce jobs.
If no value is given, the codec org.apache.hadoop.io.compress.DefaultCodec is
used. In most cases, it makes sense to use the org.apache.io.compress.SnappyCo
dec compression codec as it offers a balanced CPU usage to compression ratio. If
excessive disk IO or network IO is observed and there is available CPU, adminis-
trators can test the more aggressive org.apache.io.compress.GzipCodec.

Example value: org.apache.io.compress.SnappyCodec. Used by: Child map tasks.

mapred.output.compression.type
If the output of a MapReduce job is to be written in SequenceFile format,
mapred.output.compression.type specifies the type of compression to use. The
available types are RECORD, which causes each value in the SequenceFile to be
individually compressed, BLOCK, which causes all key value records to be com-
pressed in groups of a given size, and NONE, which results in no compression.
Note that compression type is different than the compression codec, which is the
algorithm to use. The type indicates how the compression codec is applied; that
is, to only record values, to a group or block of key value records, or not at all, as
described above.

Deciding to use compression is usually straight forward. You may choose to com-
press data to reduce the required storage, to reduce the amount of disk or network
IO required while reading or writing the data, or both. The real question is why
exactly would one select RECORD over BLOCK compression, or vice versa. Con-
sider, for a moment, that compression works by eliminating repeating data patterns
and replacing this data with some form of marker. The more repetition there is
within the data, the greater the achieved compression ratio. If the data being com-
pressed is a single record value, it is unlikely (for most kinds of records) that there
will be a significant amount of repeating data. In the case of BLOCK compression,
however, a group of records, including both keys and values, are compressed to-
gether. In most cases, this is significantly more effective. The downside to BLOCK
compression is that to access an individual record, the system must now decom-
press a block up to the location of the record of interest. In MapReduce, individual

126 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

record level access is not what we are optimizing for, so this is a reasonable trade
off. That said, if individual records in a SequenceFile are large and do contain
enough data repetition to make compression desirable, you still have the option
to use RECORD level compression. A SequenceFile containing images or other
binary payloads would be a good example of when RECORD level compression is
a good idea.

Remember that, in this context, the block being described is a group of key value
records in a SequenceFile and not a block of a file in HDFS. To date, there is no
automatic filesystem compression in HDFS. Instead, compression is always im-
plemented by the writer and decompression by the reader.

Example value: BLOCK. Used by: Child tasks.

mapred.job.tracker.handler.count
The Hadoop jobtracker is the primary entry point to the system for clients sub-
mitting jobs, as well as the hub of cluster and job status. As a result, it fields a fair
amount of RPC activity from clients and tasktrackers alike. Internally, the job-
tracker maintains a worker thread pool to handle RPCs, much the same way that
the namenode does. The mapred.job.tracker.handler.count controls the size of
this thread pool.

By default, this thread pool is set to 10, but should be customized in almost all
cases. Just like the namenode’s dfs.namenode.handler.count parameter,
mapred.job.tracker.handler.count should be set to the natural logarithm of the
cluster size times 20. See dfs.namenode.handler.count on page 96 for more infor-
mation.

Example value: 105. Used by: JT.

mapred.jobtracker.taskScheduler
Once a MapReduce job has been divided into tasks, it is the responsibility of the
jobtracker’s task scheduler plugin to decide which tasks execute in which order on
which tasktrackers. The order tasks are scheduled within a job and between jobs
can depend on a great many factors (all of which are described in Chapter 7), but
the most important is the scheduler plug-in. The mapred.jobtracker.taskSchedu
ler parameter specifies the Java class name of the scheduler plugin that should be
used by the jobtracker. By default, Hadoop MapReduce uses a first in, first out
(FIFO) scheduler implemented by the class org.apache.hadoop.mapred.JobQueue
TaskScheduler. While this is fine during development and basic functional testing,
production clusters should always use either the fair scheduler or the capacity
scheduler, both of which support multiple queues with meaningful resource con-
trols.

Example value: org.apache.hadoop.mapred.FairScheduler. Used by: JT.

mapred.reduce.parallel.copies
During the shuffle phase of a MapReduce job, each reducer task must fetch inter-
mediate map output data from each of the tasktrackers where a map task from the

MapReduce | 127

www.it-ebooks.info

http://www.it-ebooks.info/

same job ran. In other words, there are R x M total copies that must be performed
where R is the number of reducers and M is the number of mappers. If each reducer
were to perform each copy sequentially, this process would take an unnecessarily
long time and may not take full advantage of the available network bandwidth.
Instead, reducers can perform some number of these copies in parallel, as defined
by the mapred.reduce.parallel.copies parameter. If, for instance,
mapred.reduce.parallel.copies is set to 10 and 8 reducers are running on a ma-
chine, that machine alone will perform 80 copies in parallel from some number of
tasktrackers. These copies are not throttled by Hadoop, so some care must be taken
to not completely monopolize the network, potentially starving clients writing new
data to HDFS.

The default value of mapred.reduce.parallel.copies is 5 which is usually far too
low. Instead, a value of natural logarithm of the size of the cluster, time four, is
more appropriate.

Example value: 10. Used by: Child tasks.

mapred.reduce.tasks
When MapReduce jobs are executed, the user does not specify the number of map
tasks that should be created. This is because the framework (specifically, the input
format specified by the job) makes this decision based on the data, itself. However,
the user does specify the number of reducers that should be executed. It’s impos-
sible for the framework to know how many reducers to create because the data on
which they would operate has not yet been created by the mappers. The
mapred.reduce.tasks parameter specifies the number of reduce tasks to use for the
job. It is commonly overridden at the job level based on the user’s a priori knowl-
edge of the data or the work being performed.

The default value of mapred.reduce.tasks is 1. This is rarely what the user wants
and, when used accidentally, can create a significant bottleneck as all intermediate
map output must be shuffled to a single reducer. It also means that all map output
must fit on a single machine which may not be possible for larger jobs. For these
reasons, this parameter should be set to 50% of the total reducer slots on the cluster
as a starting point and adjusted based on the average number of jobs running on
the cluster at any given time and the amount of data processed by each reducer.
The ideal scenario is for most jobs to have enough reducers that they complete as
fast as possible, without each reducer handling too many or too few records, but
not going through multiple rounds of reducers, when possible.

For example, a cluster with 20 nodes, each configured to run 6 reducers in parallel
yields 120 total reducers. If no further information about the jobs running on the
cluster is available, setting mapred.reduce.tasks to 60 is a fine place to start. This
leaves available reduce slots for other jobs that are submitted while the job in
question is executing.

Example value: 64. Used by: JT.

128 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

tasktracker.http.threads
Earlier, we covered mapred.reduce.parallel.copies which controls the number of
copies each reduce task initiates in parallel during the shuffle phase. This, however,
only describes the client side of the communication. Each tasktracker runs an
embedded HTTP server which it uses to vend intermediate map output to these
reduce tasks. The tasktracker.http.threads controls the number of threads avail-
able to handle requests, concurrently.

The proper number of HTTP threads scales with the number of total reduce slots
in the cluster and the permitted parallel copies they may perform. For example, if
a cluster has 20 nodes, each with 6 reduce slots, each allowed to perform 5 parallel
copies, every tasktracker could potentially have up to 600 clients attempting to
fetch data in parallel! Of course, it may not make sense to allow so many copies in
parallel. Monitoring the network profile of jobs, detecting outliers, and tuning
appropriately is usually required.

Example value: 64. Used by: TT.

mapred.reduce.slowstart.completed.maps
Earlier, we stated that reducers couldn’t start until all mappers completed. While
it is true that the user’s reduce method can not run until all mappers have produced
their intermediate data, it is possible to start reducers early and begin shuffling
intermediate output as it’s produced by map tasks, allowing the job to get a jump
on the potentially costly operation of copying the data across the network. This
comes at the cost of occupying reduce slots before the reduce method can be exe-
cuted. We don’t necessarily want reducers to start so early that they have little or
nothing to do, but early enough so that most of the data is copied when the final
map tasks complete so the reduce operation can begin right away.

The mapred.reduce.slowstart.completed.maps parameter indicates when to begin
allocating reducers as a percentage (as a floating point number) of completed map
tasks. In other words, a value of 0.5 means reducers will be started when 50% of
the map tasks are completed in the job. The default value of 0.05 - 5% of maps
completed - starts reducers very early, and is designed for slow or highly saturated
networks. As it becomes easier to build large, line rate, non-blocking networks, it
makes sense to increase this value accordingly.

The slow start threshold is coupled to the number of nodes in the cluster, the
reducers per node, and the parallel copies per reducer. Having more machines in
the cluster allows for running more reduce tasks, each of which transfers data dur-
ing the shuffle phase. We also now know that each reducer copies data from task-
trackers in parallel, as controlled by mapred.reduce.parallel.copies. All of these
parameters provide a way to increase the amount of bandwidth consumed in order
to decrease the run time of the job. The slow start parameter provides a way to
control when to start the transfer so reduce slots remain free until they’re truly
needed.

MapReduce | 129

www.it-ebooks.info

http://www.it-ebooks.info/

For clusters connected by a line rate, non-blocking, 1Gbps network, start with slow
start set to 0.8 (80%). Monitor the network during peak MapReduce times, tuning
this up (closer to 1) to start reducers later if data copies quickly, and down (closer
to 0) to start reducers earlier. The combination of slow start, reducer count, parallel
copies, and map output compression allow administrators to control slot usage
and network bandwidth, and optimize resource utilization during the shuffle phase
rather extensively.

Example value: 0.8. Used by: JT.

Rack Topology
Rack topology, in the context of Hadoop, defines how machines are physically located
in rack in the data center. Combined with traditional network design and top of rack
switching, this allows us to infer how close machines are to one another, logically, in
terms of network connectivity. The physical locality of machines also has a bearing on
other concerns such as power infrastructure, which is critical to understanding the
possible fault domains in the system.

By communicating topology information to Hadoop, we influence the placement of
data within the cluster as well as the processing of that data. Both the Hadoop dis-
tributed filesystem and MapReduce are aware of, and benefit from rack topology in-
formation, when it’s available. We already understand that HDFS keeps multiple copies
of each block and stores them on different machines. Without topology information,
a cluster than spans racks could place all replicas on a single rack, leaving us susceptible
to data availability problems in the case that an entire rack failed. Instead, when a file
is written to HDFS, the first replica of each block is written to a random node, while
the second and third replicas are written to two machines in a separate rack. This logic
is called the block placement policy. It may seem strange not to place one replica in each
of three racks at first, but doing so would cause the data to pass over the core switching
infrastructure an extra time, burning precious and expensive bandwidth. Placing rep-
licas two and three in the same rack keeps the data transfer local to the top of rack
switch which scales with the number of racks in the cluster.

Hadoop MapReduce also uses the rack topology information when deciding on which
machines to place map tasks. Ideally, each map task is run on a machine with a local
copy of the data. This is called a data local task and is one of the primary tricks in
Hadoop’s bag. This, however, is not always possible, as active clusters may have many
jobs with many tasks running in parallel, each competing for slots on specific machines.
If a map task that needs to process block A must run, but all machines with a copy of
A are busy, the jobtracker will look for a machine in the same rack as one of these
machines and schedule the task there. When the task runs, the block is streamed across
the network to the map task. The logic behind this decision is similar to that of placing
the second and third replica of a block on two machines in the same rack during an
HDFS write; network bandwidth is greater between two machines connected to the

130 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

same top of rack switch than crossing over the core switching infrastructure. A task
that processes data that isn’t local to the machine, but is within the same rack is said
to be rack local. While rare, it is possible that even this isn’t possible, in which case the
task is non-local. Hadoop keeps track of how many tasks, of each type, are executed
for reporting purposes.

Rack topology is configured in Hadoop by implementing a script that, when given a
list of hostnames or IP addresses on the command line, prints the rack in which the
machine is located, in order. The implementation of the topology script is entirely up
to the administrator and may be as simple as a shell script that has a hardcoded list of
machines and rack names, or as sophisticated as a C executable that reads data from a
relational database. One of the most common types of scripts is one that uses a CSV
file of machine to rack mappings. See Examples 5-19 and 5-20.

Example 5-19. Python Hadoop rack topology script (/etc/hadoop/conf/topology.py)

#!/usr/bin/python

import sys

class RackTopology:

 # Make sure you include the absolute path to topology.csv.
 DEFAULT_TOPOLOGY_FILE = '/etc/hadoop/conf/topology.csv'
 DEFAULT_RACK = '/default-rack'

 def __init__(self, filename = DEFAULT_TOPOLOGY_FILE):
 self._filename = filename
 self._mapping = dict()

 self._load_topology(filename)

 def _load_topology(self, filename):
 '''
 Load a CSV-ish mapping file. Should be two columns with the first being the
 hostname or IP and the second the rack name. If a line isn't well formed,
 it's discarded. Each field is stripped of any leading or trailing space. If
 the file fails to load for any reason, all hosts will be in DEFAULT_RACK.
 '''
 try:
 f = file(filename, 'r')

 for line in f:
 fields = line.split(',')

 if len(fields) == 2:
 self._mapping[fields[0].strip()] = fields[1].strip()
 except:
 pass

 def rack_of(self, host):
 '''
 Look up and a hostname or IP address in the mapping and return its rack.

Rack Topology | 131

www.it-ebooks.info

http://www.it-ebooks.info/

 '''
 if self._mapping.has_key(host):
 return self._mapping[host]
 else:
 return RackTopology.DEFAULT_RACK

if __name__ == '__main__':
 app = RackTopology()

 for node in sys.argv[1:]:
 print app.rack_of(node)

Example 5-20. Rack topology mapping file (/etc/hadoop/conf/topology.csv)

10.1.1.160,/rack1
10.1.1.161,/rack1
10.1.1.162,/rack2
10.1.1.163,/rack2
10.1.1.164,/rack2

With our script (Example 5-19) and mapping file (Example 5-20) defined, we only need
to tell Hadoop the location of the script to enable rack awareness. To do this, set the
parameter topology.script.file.name in core-site.xml to the absolute path of the script.
The script should be executable and require no arguments other than the hostnames
or IP addresses. Hadoop will invoke this script, as needed, to discover the node to rack
mapping information.

You can verify that Hadoop is using your script by running the command
hadoop dfsadmin -report as the HDFS superuser. If everything is working, you should
see the proper rack name next to each machine. The name of the machine shown in
this report (minus the port) is also the name that is passed to the topology script to
look up rack information.

[esammer@hadoop01 ~]$ sudo -u hdfs hadoop dfsadmin -report
Configured Capacity: 19010409390080 (17.29 TB)
Present Capacity: 18228294160384 (16.58 TB)
DFS Remaining: 5514620928000 (5.02 TB)
DFS Used: 12713673232384 (11.56 TB)
DFS Used%: 69.75%
Under replicated blocks: 181
Blocks with corrupt replicas: 0
Missing blocks: 0

Datanodes available: 5 (5 total, 0 dead)

Name: 10.1.1.164:50010
Rack: /rack1
Decommission Status : Normal
Configured Capacity: 3802081878016 (3.46 TB)
DFS Used: 2559709347840 (2.33 TB)
Non DFS Used: 156356984832 (145.62 GB)
DFS Remaining: 1086015545344(1011.43 GB)
DFS Used%: 67.32%

132 | Chapter 5: Installation and Configuration

www.it-ebooks.info

http://www.it-ebooks.info/

DFS Remaining%: 28.56%
Last contact: Sun Mar 11 18:45:47 PDT 2012

...

The naming convention of the racks is a slash separated, pseudo-hierarchy, exactly the
same as absolute Linux paths. Although today, rack topologies are single level (that is,
machines are either in the same rack or not; there is no true hierarchy), it is possible
that Hadoop will develop to understand multiple levels of locality. For instance, it is
not currently possible to model multinode chassis systems with multiple racks. If a
chassis holds two discreet servers and the cluster spans multiple racks, it is possible
that two replicas of a block could land in a single chassis, which is less than ideal. This
situation is significantly more likely in the case of highly dense blade systems, although
they have other problems as well (see “Blades, SANs, and Virtualization” on page 52).

Some users see rack topology as a way to span a Hadoop cluster across data centers by
creating two large racks, each of which encompasses all the nodes in each data center.
Hadoop will not berate you with errors if you were to try this (at least not initially), but
rest assured it will not work in practice. It seems as though, with multiple replicas and
the ability to impact how replicas are placed, you’d have everything you need. The
devil, as they say, is in the details. If you were to configure a cluster this way, you’d
almost immediately hit the network bottleneck between data centers. Remember that
while rack topology doesn’t necessarily prohibit non-local reads, it only reduces the
chances, and either way, all writes would always span data centers (because replicas
are written synchronously). The other major issue is that, when running MapReduce
jobs, the jobtracker will see replicas in the other data center—and the nodes on which
they reside—as viable candidates for scheduling in order to achieve data locality during
processing. This is benign enough, as no data is transferred across the network, but the
ensuing shuffle phase will have to transfer a significant amount of data between the
data centers. The final pathological case with this configuration is that, assuming ev-
erything else were not to be a problem (which is unlikely), within a data center, replicas
will view all racks as a single rack. This results in an inability to distinguish between a
rack-local task and a non-local task to Hadoop, which generates a significant amount
of data transfer across the core switches within a single data center that wouldn’t nor-
mally occur.

Security
Configuring authentication, authorization, and the various subsystems within Hadoop
to operate in a secure manner is a large undertaking. Due to this complexity, Chap-
ter 6 is devoted to the topic, including the necessary configuration steps to enable
Hadoop security.

Security | 133

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Identity, Authentication, and
Authorization

Multitenancy is a fancy word for supporting many independent entities within a single
larger system. The ability to support multiple discreet entities in a system is generally
useful when it is costly or complex to operate an instance of that system for each entity.
An example of this is the ability to run multiple databases within a single database
server, a feature supported by almost all RDBMS vendors. By bringing multiple users
of a service together, we can take advantage of the economies of scale and offer greater
service as a whole. A simple example of this in the context of Hadoop is that, if a large
cluster is built to run hourly production MapReduce jobs, there are generally free re-
sources between executions of those jobs. If we were to silo users by group or use case,
these lulls in resource usage would be lost across all groups. Instead, it often (but ad-
mittedly not always) makes sense to combine smaller silo clusters into a single large
cluster. Not only does this simplify operations, but it increases the available capacity
to service consumers, on average, which improves system resource utilization.

Unfortunately, running multitenant systems comes with some obvious challenges.
Controlling access to data and resources immediately becomes a point of concern,
especially when the data is sensitive in nature. It may be that two different groups of
users should not see each other’s data or even not know one another exist. Controlling
access to resources also becomes critical. It shouldn’t be possible for one group to
monopolize the resources of a shared system. Administrators and especially security
and compliance staff expect to be able to monitor and audit user activity in multitenant
systems to ensure policies are enforced. The degree of isolation within a multitenant
system can be seen as the gating factor between silo and shared deployments. This is
even more true of data storage and processing systems, and is the impetus for a deep
review of identity, access, and authorization controls in a system such as Hadoop.

135

www.it-ebooks.info

http://www.it-ebooks.info/

When a user performs an action in Hadoop, there are three significant questions:

1. Who does this user claim to be?

The identity of the entity interacting with the cluster (where entity means a human
user or another system) is who they purport to be. As humans, we identify using
our names. In Linux, we use usernames, whereas the relational database MySQL,
for instance, has its own notion of a user. The identity is an arbitrary label that is
unique to an entity, and something to which we can attach meaning.

2. Can this user prove they are who they say they are?

Anyone can claim to be your Uncle Larry or Aunt Susan, but can they prove it? We
authenticate one another by confirming an identity using some kind of system. To
enter a country, an individual must present a valid and authentic passport bearing
a photo of the person, for instance (although some may say this is a weak form of
subjective authentication). Linux provides multiple forms of authentication via
plug-ins, although passwords are probably the most common. Authentication
mechanisms vary in strength (the rigor with which they confirm a user’s identity).

3. Is this user allowed to do what they’re asking to do?

Once a user has identified themselves and we are reasonably sure they are who they
claim to be, only then does it make sense to ensure they have been authorized to
perform the requested action. It never makes sense for a system to support au-
thorization without first authenticating users; a person could simply lie about who
they are to gain privileges they wouldn’t otherwise have.

Hadoop operates in either the default, so called simple mode or secure mode, which
provides strong authentication support via Kerberos. For many, the simple security
mode is sufficient and offers reasonable protection from mistakes in a trusted environ-
ment. As its name implies, it’s simple to configure and manage, relying primarily on
the host for authentication. If, however, you are running Hadoop in an untrusted,
multitenant environment or where accidental data exposure would be catastrophic,
secure mode is the appropriate option. In secure mode, Hadoop uses the well-known
Kerberos protocol to authenticate users and daemons themselves during all operations.
Additionally, MapReduce tasks in secure mode are executed as the same OS user as
the job was submitted, whereas in simple mode, they are executed as the user running
the tasktracker.

The most important aspect to understand is that, regardless of whether simple or secure
mode is configured, it controls only how users are authenticated with the system.
Authorization is inherently service specific. The evaluation of the authenticated user’s
privileges in the context of the action they are asking to perform is controlled entirely
by the service. In the case of HDFS, this means deciding if a user is permitted to read
from or write to a file, for example. Authentication must always be performed before
authorization is considered, and because it is commonly the same for all services, it can
be built as a separate, generic service.

136 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://www.it-ebooks.info/

Identity
In Hadoop, there is a strong relationship between who a user is in the host operating
system and who they are in HDFS or MapReduce. Furthermore, since there are many
machines involved in a cluster, it may not be immediately obvious what is actually
required in order to execute a MapReduce job. Hadoop, like most systems, uses the
concepts of users and groups to organize identities. However—and this is the root of
quite a bit of confusion—it uses the identity of the user according to the operating
system. That is, there is no such thing as a Hadoop user or group. When an OS user,
in my case, user esammer, executes a command using the hadoop executable, or uses any
of the Java APIs, Hadoop accepts this username as the identity with no further checks.
Versions of Apache Hadoop prior to 0.20.200 or CDH3u0 also allowed users to specify
their identity by setting a configuration parameter when performing an action in HDFS
or even running a MapReduce job, although this is no longer possible.

In simple mode, the Hadoop library on the client sends the username of the running
process with each command to either the namenode or jobtracker, depending on the
command executed. When in secure mode, the primary component of the Kerberos
principal name is used as the identity of the user. The user must already have a valid
Kerberos ticket in their cache, otherwise the command will fail with an incredibly
cryptic message like Example 6-1.

Example 6-1. A typical failed authentication attempt with security enabled

WARN ipc.Client: Exception encountered while connecting to the
server: javax.security.sasl.SaslException: GSS initiate failed [Caused by
GSSException: No valid credentials provided (Mechanism level: Failed to
find any Kerberos tgt)]

Kerberos and Hadoop
As mentioned earlier, Hadoop supports strong authentication using the Kerberos pro-
tocol. Kerberos was developed by a team at MIT to provide strong authentication of
clients to a server and is well-known to many enterprises. When operating in secure
mode, all clients must provide a valid Kerberos ticket that can be verified by the server.
In addition to clients being authenticated, daemons are also verified. In the case of
HDFS, for instance, a datanode is not permitted to connect to the namenode unless it
provides a valid ticket within each RPC. All of this amounts to an environment where
every daemon and client application can be cryptographically verified as a known entity
prior to allowing any operations to be performed, a desirable feature of any data storage
and processing system.

Kerberos and Hadoop | 137

www.it-ebooks.info

http://www.it-ebooks.info/

Kerberos: A Refresher
To say Kerberos is “well-known” could be an overstatement. For many, Kerberos is
shrouded in dense, intimidating terminology and requires specific knowledge to con-
figure properly. Many implementations of Kerberos exist, and though there are
RFCs1 that describe the Kerberos protocol itself, management tools and methods have
traditionally been vendor-specific. In the Linux world, one of the most popular imple-
mentations is MIT Kerberos version 5 (or MIT krb5 for short), an open source software
package that includes the server, client, and admin tools. Before we dive into the details
of configuring Hadoop to use Kerberos for authentication, let’s first take a look at how
Kerberos works, as well as the MIT implementation.

A user in Kerberos is called a principal, which is made up of three distinct components:
the primary, instance, and realm. The first component of the principal is called the
primary, or sometimes the user component. The primary component is an arbitrary
string and may be the operating system username of the user or the name of a service.
The primary component is followed by an optional section called the instance, which
is used to create principals that are used by users in special roles or to define the host
on which a service runs, for example. An instance, if it exists, is separated from the
primary by a slash and then the content is used to disambiguate multiple principals for
a single user or service. The final component of the principal is the realm. The realm is
similar to a domain in DNS in that it logically defines a related group of objects, al-
though rather than hostnames as in DNS, the Kerberos realm defines a group of prin-
cipals (see Table 6-1). Each realm can have its own settings including the location of
the KDC on the network and supported encryption algorithms. Large organizations
commonly create distinct realms to delegate administration of a realm to a group within
the enterprise. Realms, by convention, are written in uppercase characters.

Table 6-1. Example Kerberos principals

Principal Description

esammer@MYREALM.CLOUDERA.COM A standard user principal. User esammer in realm MYR-
EALM.CLOUDERA.COM.

esammer/admin@MYREALM.CLOUDERA.COM The admin instance of the user esammer in the realm MYR-
EALM.CLOUDERA.COM.

hdfs/hadoop01.cloudera.com@MYREALM.CLOUDERA.COM The hdfs service on the host hadoop01.cloudera.com in the
realm MYREALM.CLOUDERA.COM.

At its core, Kerberos provides a central, trusted service called the Key Distribution
Center or KDC. The KDC is made up of two distinct services: the authentication server
(AS), which is responsible for authenticating a client and providing a ticket granting
ticket (TGT), and the ticket granting service (TGS), which, given a valid TGT, can grant

1. IETF RFC 4120 - The Kerberos Network Authentication Service (version 5) - http://tools.ietf.org/html/
rfc4120

138 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://web.mit.edu/kerberos/
http://tools.ietf.org/html/rfc4120
http://tools.ietf.org/html/rfc4120
http://www.it-ebooks.info/

a ticket that authenticates a user when communicating with a Kerberos-enabled (or
Kerberized) service. The KDC contains a database of principals and their keys, very
much like /etc/passwd and some KDC implementations (including MIT Kerberos) sup-
port storing this data in centralized systems like LDAP. That’s a lot of verbiage, but the
process of authenticating a user is relatively simple.

Consider the case where user esammer wants to execute the command hadoop fs -get /
user/esammer/data.txt. When operating in secure mode, the HDFS namenode and
datanode will not permit any communication that does not contain a valid Kerberos
ticket. We also know that at least two (and frequently many more) services must be
contacted: one is the namenode to get the file metadata and check permissions, and
the rest are the datanodes to retrieve the blocks of the file. To obtain any tickets from
the KDC, we first retrieve a TGT from the AS by providing our principal name. The
TGT, which is only valid for an administrator-defined period of time, is encrypted with
our password and sent back to the client. The client prompts us for our password and
attempts to decrypt the TGT. If it works, we’re ready to request a ticket from the TGS,
otherwise we’ve failed to decrypt the TGT and we’re unable to request tickets. It’s
important to note that our password has never left the local machine; the system works
because the KDC has a copy of the password, which has been shared in advance. This
is a standard shared secret or symmetric key encryption model.

It is still not yet possible to speak to the namenode or datanode; we need to provide a
valid ticket for those specific services. Now that we have a valid TGT, we can request
service specific tickets from the TGS. To do so, using our TGT, we ask the TGS for a
ticket for a specific service, identified by the service principal (such as the namenode
of the cluster). The TGS, which is part of the KDC, can verify the TGT we provide is
valid because it was encrypted with a special key called the TGT key. If the TGT can
be validated and it hasn’t yet expired, the TGS provides us a valid ticket for the service,
which is also only valid for a finite amount of time. Within the returned ticket is a
session key; a shared secret key that the service to which we speak can confirm with
the KDC. Using this ticket, we can now contact the namenode and request metadata
for /user/esammer/data.txt. The namenode will validate the ticket with the KDC and
assuming everything checks out, then performs the operation we originally requested.
Additionally, for operations that involve access to block data, the namenode generates
a block token for each block returned to the client. The block token is then provided to
the datanode by client, which validates its authenticity before providing access to the
block data.

The TGT received from the KDC’s AS usually has a lifetime of 8 to 24 hours, meaning
it is only necessary to provide a password once per time period. The TGT is cached
locally on the client machine and reused during subsequent requests to the TGS. The
MIT Kerberos implementation, for instance, caches ticket information in the temporary
file /tmp/krb5cc_uid where uid is the Linux user’s uid. To perform the initial authen-
tication and retrieve a TGT from the KDC with MIT Kerberos, use the kinit command;
to list cached credentials, use the klist command as in Example 6-2.

Kerberos and Hadoop | 139

www.it-ebooks.info

http://www.it-ebooks.info/

Example 6-2. Obtaining a ticket granting ticket with kinit

[esammer@hadoop01 ~]$ klist
klist: No credentials cache found (ticket cache FILE:/tmp/krb5cc_500)
[esammer@hadoop01 ~]$ kinit
Password for esammer@MYREALM.CLOUDERA.COM:
[esammer@hadoop01 ~]$ klist
Ticket cache: FILE:/tmp/krb5cc_500
Default principal: esammer@MYREALM.CLOUDERA.COM

Valid starting Expires Service principal
03/22/12 15:35:50 03/23/12 15:35:50 krbtgt/MYREALM.CLOUDERA.COM@MYREALM.CLOUDERA.COM
 renew until 03/22/12 15:35:50
[esammer@hadoop01 ~]$ hadoop fs -get /user/esammer/data.txt
...

Kerberos is an enormous topic, complex in its own right. Prior to embarking on a
Kerberos deployment, it’s critical to understand how hosts and services are accessed
by users as well as other services. Without a coherent understanding of a system, it’s
likely that you will find that services that used to be accessible no longer work. For a
detailed explanation of Kerberos, see Kerberos: The Definitive Guide by Jason Garman
(O'Reilly Media).

Kerberos Support in Hadoop
Now that we have some understanding of how Kerberos works conceptually, it’s worth
looking at how this applies to Hadoop. There are two primary forms of authentication
that occur in Hadoop with respect to Kerberos: nodes within the cluster authenticating
with one another to ensure that only trusted machines are part of the cluster, and users,
both human and system, that access the cluster to interact with services. Since many
of the Hadoop daemons also have embedded web servers, they too must be secured
and authenticated.

Within each service, both users and worker nodes are verified by their Kerberos cre-
dentials. HDFS and MapReduce follow the same general architecture; the worker dae-
mons are each given a unique principal that identifies each daemon, they authenticate,
and include a valid ticket in each RPC to their respective master daemon. The workers
authenticate by using a keytab stored on the local disk. Though tedious, the act of
creating a unique principal for each daemon, for each host, generating the keytab, and
getting it to the proper machine, is absolutely necessary when configuring a secure
Hadoop cluster. Workers must have their own unique principals because if they didn’t,
the KDC would issue a similar TGT (based on the principal’s key and timestamp) to
all nodes, and services would see potentially hundreds of clients all attempting to au-
thenticate with the same ticket, falsely characterizing it as a replay attack.

Multiple principals are used by the system when Hadoop is operating in secure mode
and take the form service-name/hostname@KRB.REALM.COM where the service-name is
hdfs in the case of the HDFS daemons and mapred in the case of the MapReduce dae-

140 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://shop.oreilly.com/product/9780596004033.do
http://www.it-ebooks.info/

mons. Since worker nodes run both a datanode as well as a tasktracker, each node
requires two principals to be generated: one for the datanode and one for the task-
tracker. The namenode and jobtracker also have principals, although in smaller clusters
where the one or both of these daemons run on a node that is also a slave, it is not
necessary to create a separate principal as namenode and datanode can share a principal
and the tasktracker and jobtracker can share a principal.

Since it isn’t feasible to log into each machine and execute kinit as both user hdfs and
mapred and provide a password, the keys for the service principals are exported to files
and placed in a well-known location. These files are referred to as key tables or just
keytabs. Exporting the keys to files may seem dangerous, but if the contents of the files
are properly protected by filesystem permissions (that is, owned by the user the daemon
runs as, with permissions set to 0400), the integrity of the key is not compromised.
When the daemons start up, they use this keytab to authenticate with the KDC and get
a ticket so they can connect to the namenode or jobtracker, respectively. When oper-
ating in secure mode, it is not possible for a datanode or tasktracker to connect to its
constituent master daemon without a valid ticket.

Exporting keys to keytabs
With MIT Kerberos, exporting a key to a keytab will invalidate any
previously exported copies of that same key unless the -norandkey op-
tion is used. It’s absolutely critical that you do not export a key that has
already been exported unless that’s what you mean to do. This should
only be necessary if you believe a keytab has become compromised or
is otherwise irrevocably lost or destroyed.

Users performing HDFS operations and running MapReduce jobs also must authenti-
cate prior to those operations being allowed (or, technically, checked for authoriza-
tion). When an application uses the Hadoop library to communicate with one of the
services and is running in secure mode, the identity of the user to Hadoop is the primary
component of the Kerberos principal. This is different from simple mode where the
effective uid of the process is the identity of the user. Additionally, the tasks of a Map-
Reduce jobs execute as the authenticated user that submitted the job. What this means
is that, in secure mode, each user must have a principal in the KDC database and a user
account on every machine in the cluster. See Table 6-2.

Table 6-2. Comparison of secure and simple mode identity

 Simple Secure

Identity comes from: Effective uid of client process Kerberos principal

MapReduce tasks run as: Tasktracker user (e.g., mapred) Kerberos principal

Kerberos and Hadoop | 141

www.it-ebooks.info

http://www.it-ebooks.info/

The requirement that all users have a principal can complicate otherwise simple tasks.
For instance, assuming the HDFS super user is hdfs, it would normally be possible to
perform administrative activities using sudo like in Example 6-3.

Example 6-3. Performing HDFS administrative commands with sudo

Creating a new user's home directory in HDFS. Since /user is owned
by user hdfs, it is necessary to become that user or the super user (which
also happens to be hdfs).
[esammer@hadoop01 ~]$ sudo -u hdfs hadoop fs -mkdir /user/jane

Unfortunately, this doesn’t work in secure mode because the uid of the process doesn’t
make us hdfs. Instead, it is necessary to authenticate as user hdfs with Kerberos. This
is normally done using kinit, as we saw earlier. This has the unpleasant side effect of
requiring that we share the password for the HDFS principal. Rather than share the
HDFS principal password with all the cluster administrators, we can export the HDFS
principal key to a keytab protected by restrictive filesystem permissions, and then use
sudo to allow selective users to access it when they authenticate with kinit. HDFS also
supports the notion of a super group that users can be a member of to perform admin-
istrative commands as themselves.

Running tasks as the user that submitted the MapReduce job solves a few potential
problems, the first of which is that, if we were to allow all tasks to run as user mapred,
each map task would produce its intermediate output as the same user. A malicious
user would be able to simply scan through the directories specified by
mapred.local.dir and read or modify the output of another unrelated task. This kind
of lack of isolation is a non-starter for security-sensitive deployments.

Since the tasktracker runs as an unprivileged user (user mapred, by default, in the case
of CDH and whatever user the administrator configures in Apache Hadoop), it isn’t
possible for it to launch task JVMs as a different user. One way to solve this problem
is to simply run the tasktracker process as root. While this would solve the immediate
problem of permissions, any vulnerability in the tasktracker would open the entire
system to compromise. Worse, since the tasktracker’s job is to execute user supplied
code as a user indicated by the jobtracker, an attacker would trivially have full control
over all worker nodes. Instead of running the tasktracker as root, when operating in
secure mode, the tasktracker relies on a small setuid executable called the task-con
troller. The task-controller is a standalone binary implemented in C that sanity checks
its environment and immediately drops privileges to the proper user before launching
the task JVM. Configured by a small key value configuration file called taskcontrol-
ler.cfg in the Hadoop configuration directory, the task-controller is restricted to ex-
ecuting tasks for users with a uid above a certain value (as privileged accounts usually
have low numbered uids). Specific users can also be explicitly prevented from running
tasks, regardless of their uid, which is useful for denying Hadoop daemon users from
executing tasks. For the task-controller to execute tasks as the user who submitted
the job, each user must have accounts on all machines of the cluster. Administrators

142 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://www.it-ebooks.info/

are expected to maintain these accounts, and because of the potentially large number
of machines to keep in sync, admins are encouraged to either use centralized account
management such as LDAP or an automated system to keep password files up-to-date.

Configuring Hadoop security

Configuring Hadoop to operate in secure mode can be a daunting task with a number
of external dependencies. Detailed knowledge of Linux, Kerberos, SSL/TLS, and JVM
security constructs are required. At the time of this book, there are also some known
gotchas that exist in certain Linux distributions and versions of the JVM that can cause
you grief. Some of those are exposed below.

The high-level process for enabling security is as follows.

1. Audit all services to ensure enabling security will not break anything.

Hadoop security is all or nothing; enabling it will prevent all non-Kerberos au-
thenticated communication. It is absolutely critical that you first take an inventory
of all existing processes, both automated and otherwise, and decide how each will
work once security is enabled. Don’t forget about administrative scripts and tools!

2. Configure a working non-security enabled Hadoop cluster.

Before embarking on enabling Hadoop’s security features, get a simple mode clus-
ter up and running. You’ll want to iron out any kinks in DNS resolution, network
connectivity, and simple misconfiguration early. Debugging network connectivity
issues and supported encryption algorithms within the Kerberos KDC at the same
time is not a position that you want to find yourself in.

3. Configure a working Kerberos environment.

Basic Kerberos operations such as authenticating and receiving a ticket-granting
ticket from the KDC should work before you continue. You are strongly encour-
aged to use MIT Kerberos with Hadoop; it is, by far, the most widely tested. If you
have existing Kerberos infrastructure (such as provided by Microsoft Active Di-
rectory) that you wish to authenticate against, it is recommended that you config-
ure a local MIT KDC with one way cross realm trust so Hadoop daemon principals
exist in the MIT KDC and user authentication requests are forwarded to Active
Directory. This is usually far safer as large Hadoop clusters can accidentally create
distributed denial of service attacks against shared infrastructure when they be-
come active.

4. Ensure host name resolution is sane.

As discussed earlier, each Hadoop daemon has its own principal that it must know
in order to authenticate. Since the hostname of the machine is part of the principal,
all hostnames must be consistent and known at the time the principals are created.
Once the principals are created, the hostnames may not be changed without rec-
reating all of the principals! It is common that administrators run dedicated, cach-
ing-only, DNS name servers for large clusters.

Kerberos and Hadoop | 143

www.it-ebooks.info

http://www.it-ebooks.info/

5. Create Hadoop Kerberos principals.

Each daemon on each host of the cluster requires a distinct Kerberos principal
when enabling security. Additionally, the Web user interfaces must also be given
principals before they will function correctly. Just as the first point says, security
is all or nothing.

6. Export principal keys to keytabs and distribute them to the proper cluster nodes.

With principals generated in the KDC, each key must be exported to a keytab, and
copied to the proper host securely. Doing this by hand is incredibly laborious for
even small clusters and, as a result, should be scripted.

7. Update Hadoop configuration files.

With all the principals generated and in their proper places, the Hadoop configu-
ration files are then updated to enable security. The full list of configuration prop-
erties related to security are described later.

8. Restart all services.

To activate the configuration changes, all daemons must be restarted. The first
time security is configured, it usually makes sense to start the first few daemons to
make sure they authenticate correctly and are using the proper credentials before
firing up the rest of the cluster.

9. Test!

It’s probably clear by now that enabling security is complex and requires a fair bit
of effort. The truly difficult part of configuring a security environment is testing
that everything is working correctly. It can be particularly difficult on a large pro-
duction cluster with existing jobs to verify that everything is functioning properly,
but no assumptions should be made. Kerberos does not, by definition, afford le-
niency to misconfigured clients.

Creating principals for each of the Hadoop daemons and distributing their respective
keytabs is the most tedious part of enabling Hadoop security. Doing this for each dae-
mon by hand would be rather error prone, so instead, we’ll create a file of host names
and use a script to execute the proper commands. These examples assume MIT Ker-
beros 1.9 on CentOS 6.2.2

First, build a list of fully qualified host names, either by exporting them from an in-
ventory system or generating them based on a well-known naming convention. For
example, if all hosts follow the naming convention of hadoopN.mycompany.com, where
N is a zero padded sequential number, a simple shell script will do:

[esammer@hadoop01 ~]$ for n in $(seq -f "%02g" 1 10) ; do
 echo "hadoop${n}.mycompany.com"
done > hostnames.txt
[esammer@hadoop01 ~]$ cat hostnames.txt

2. You can install the MIT Kerberos 1.9 client and server packages on CentOS 6.2 using the commands yum
install krb5-workstation and yum install krb5-server, respectively.

144 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://www.it-ebooks.info/

hadoop01.mycompany.com
hadoop02.mycompany.com
hadoop03.mycompany.com
hadoop04.mycompany.com
hadoop05.mycompany.com
hadoop06.mycompany.com
hadoop07.mycompany.com
hadoop08.mycompany.com
hadoop09.mycompany.com
hadoop10.mycompany.com

Using our host list as input, we can write a script to create the necessary principals,
export the keys to keytabs, and bucket them by machine name.

This script will regenerate keys of any existing principals of the same
name, which will invalidate any existing keytabs or passwords. Always
measure twice and cut once when running scripts that affect the KDC!

#!/bin/sh

[-r "hostnames.txt"] || {
 echo "File hostnames.txt doesn't exist or isn't readable."
 exit 1
}

Set this to the name of your Kerberos realm.
krb_realm=MYREALM.MYCOMPANY.COM

for name in $(cat hostnames.txt); do
 install -o root -g root -m 0700 -d ${name}

 kadmin.local <<EOF
addprinc -randkey host/${name}@${krb_realm}
addprinc -randkey hdfs/${name}@${krb_realm}
addprinc -randkey mapred/${name}@${krb_realm}
ktadd -k ${name}/hdfs.keytab -norandkey \
 hdfs/${name}@${krb_realm} host/${name}@${krb_realm}
ktadd -k ${name}/mapred.keytab -norandkey \
 mapred/${name}@${krb_realm} host/${name}@${krb_realm}
EOF

done

This script relies on a properly configured Kerberos KDC and assumes it is being run
on the same machine as the KDC database. It also assumes /etc/krb5.conf is correctly
configured and that the current user, root, has privileges to write to the KDC database
files. It’s also important to use the -norandkey option to ktadd, otherwise each time you
export the key, it changes, invalidating all previously created keytabs containing that
key. Also tricky is that the -norandkey option to ktadd works only when using kad
min.local (rather than kadmin). This is because kadmin.local never transports the key
over the network since it works on the local KDC database. If you are not using MIT

Kerberos and Hadoop | 145

www.it-ebooks.info

http://www.it-ebooks.info/

Kerberos, consult your vendor’s documentation to ensure keys are protected at all
times.

You should now have a directory for each hostname, each of which contains two keytab
files: one named hdfs.keytab and one named mapred.keytab. Each keytab contains its
respective service principal (for example, hdfs/hostname@realm) and a copy of the host
keytab. Next, using a secure copy utility like scp or rsync tunnelled over ssh, copy the
keytabs to the proper machines and place them in the Hadoop configuration directory.
The owner of the hdfs.keytab file must be the user the namenode, secondary namenode,
and datanodes run as, whereas the mapred.keytab file must be owned by the user the
jobtracker and tasktrackers run as. Keytab files must be protected at all times and as
such, should have the permissions 0400 (owning user read only).

On Encryption Algorithms
Kerberos keys can be encrypted using various algorithms, some of which are stronger
than others. These days, AES-128 or 256 is commonly used to encrypt keys. For Java
to support AES-256, an additional JCE policy file must be installed on all machines in
the cluster as well as any client machines that wish to connect to it. The so-called JCE
Unlimited Strength Jurisdiction Policy Files enable additional algorithms to be used by
the JVM. This is not included by default due to US export regulations and controls
placed on certain encryption algorithms or strengths.

Some Linux distributions distribute MIT Kerberos with AES-256 as the preferred en-
cryption algorithm for keys, which places a requirement on the JVM to support it. One
option is to install the unlimited strength policy file, as previously described, or Ker-
beros can be instructed not to use AES-256. Obviously, the latter option is not appealing
as it potentially opens the system to well-known (albeit difficult) attacks on weaker
algorithms.

The Unlimited Strength Jurisdiction Policy Files may be downloaded from http://www
.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html.

With the keytabs distributed to the proper machines, the next step is to update the
Hadoop configuration files to enable secure mode. First, Kerberos security is enabled
in core-site.xml.

hadoop.security.authentication
The hadoop.security.authentication parameter defines the authentication mech-
anism to use within Hadoop. By default, it is set to simple, which simply trusts the
client is who they claim to be, whereas setting it to the string kerberos enables
Kerberos support. In the future, other authentication schemes may be supported,
but at the time of this writing, these are the only two valid options.

Example value: kerberos

hadoop.security.authorization
Enabling hadoop.security.authorization causes Hadoop to authorize the client
when it makes remote procedure calls to a server. The access control lists that affect

146 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.it-ebooks.info/

these permissions are configured via the hadoop-policy.xml file and allow per-ser-
vice level control. For instance, it is possible to permit only users placed in the
mapred-admin Linux group to invoke APIs that are part of the administration service
(the security.admin.operations.protocol.acl policy). When enabling security,
this feature should be enabled as well and meaningful ACLs configured.

Example: true

Example 6-4 shows core-site.xml with the proper security properties set.

Example 6-4. Updating core-site.xml to enable Hadoop security

<?xml version="1.0"?>
<configuration>

 <!-- Add these properties to the existing core-site.xml configuration. -->

 <property>
 <name>hadoop.security.authentication</name>
 <value>kerberos</value>
 </property>

 <property>
 <name>hadoop.security.authorization</name>
 <value>true</value>
 </property>

</configuration>

Next, hdfs-site.xml must be configured so HDFS knows the principals to use and the
location of the keytabs. Hadoop datanodes will also refuse to start in secure mode
unless the data transceiver port is below 1024 (a privileged port) so that must also be
changed.

dfs.block.access.token
Block access tokens are temporary keys that allow an HDFS block to be read,
written, deleted, or a host of other internal actions, by an authenticated user. This
mechanism allows Hadoop to ensure that only the intended users are able to access
data in HDFS. While disabled (false) by default, this parameter should be enabled
(set to true) in a secure deployment.

dfs.namenode.keytab.file
The dfs.namenode.keytab.file parameter specifies the location of the keytab that
contains the Kerberos principal key for the namenode. This is the file uploaded to
each host and by convention, is placed in the Hadoop configuration directory.

Example: /etc/hadoop/conf/hdfs.keytab

dfs.namenode.kerberos.principal
The Kerberos principal the namenode should use to authenticate. The key for this
principal must exist in the keytab specified by dfs.namenode.keytab.file. The spe-
cial token _HOST can be used for the instance portion of the principal, in which

Kerberos and Hadoop | 147

www.it-ebooks.info

http://www.it-ebooks.info/

case the fully qualified domain name will be interpolated. Note that the _HOST
token cannot be used anywhere else in the principal.

Example: hdfs/_HOST@MYREALM.MYCOMPANY.COM

dfs.namenode.kerberos.https.principal
Similar to dfs.namenode.kerberos.principal (see previous entry), this parameter
specifies the Kerberos principal that should be used by the embedded HTTPS
server. The key for this principal must also be in the keytab specified by dfs.name
node.keytab.file. Note that the local part of this principal must be host, as shown
in the example.

Example: host/_HOST@MYREALM.MYCOMPANY.COM

dfs.https.address
The hostname or IP address on which the embedded HTTPS server should be
bound. It is valid to specify the wild card IP 0.0.0.0 to indicate the HTTPS server
should listen on all interfaces.

Example: 0.0.0.0

dfs.https.port
The port on which the embedded HTTPS server should listen for requests.

Example: 50470

dfs.datanode.keytab.file
Exactly the same as dfs.namenode.keytab.file, the dfs.datanode.keytab.file
specifies the keytab file containing the principal keys used by the datanode process.
This can, and usually is, the same file as dfs.namenode.keytab.file.

Example: /etc/hadoop/conf/hdfs.keytab

dfs.datanode.kerberos.principal
The Kerberos principal the datanode should use to authenticate. The key for this
principal must exist in the keytab specified by dfs.datanode.keytab.file. The spe-
cial token _HOST can be used for the instance portion of the principal, in which
case the fully qualified domain name will be interpolated. Note that the _HOST
token cannot be used anywhere else in the principal. This is commonly the same
principal as dfs.namenode.kerberos.principal.

Example: hdfs/_HOST@MYREALM.MYCOMPANY.COM

dfs.datanode.kerberos.https.principal
Similar to dfs.datanode.kerberos.principal, this parameter specifies the Kerberos
principal that should be used by the embedded HTTPS server. The key for this
principal must also be in the keytab specified by dfs.datanode.keytab.file.

Example: host/_HOST@MYREALM.MYCOMPANY.COM

dfs.datanode.address
The hostname or IP address and port, separated by a colon, on which the data
transceiver RPC server should be bound. It is valid to specify the wild card IP 0.0.0.0

148 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://www.it-ebooks.info/

to indicate the server should listen on all interfaces. With security enabled, this
port must be below 1024 or the datanode will not start.

Example: 0.0.0.0:1004

dfs.datanode.http.address
The hostname or IP address and port, separated by a colon, on which the embedded
HTTP server should be bound. It is valid to specify the wild card IP 0.0.0.0 to
indicate the HTTP server should listen on all interfaces.

Example: 0.0.0.0:1006

dfs.datanode.data.dir.perm
When security is enabled, Hadoop performs extra checks to ensure HDFS block
data cannot be read by unauthorized users. One of these checks involves making
sure the directories specified by dfs.data.dir are set to restrictive permissions. This
prevents user code from simply opening and reading block data directly from the
local disk rather than using the HDFS APIs, which require a valid Kerberos ticket
and perform authorization checks on the file. If the permissions are incorrect, the
datanode will change the permissions to the value specified by this parameter.

Local read short-circuiting
HDFS supports a feature called local read short-circuiting (as im-
plemented by HDFS-2246) in which a client application running
on the same machine as the datanode can completely bypass the
datanode server and read block files directly from the local filesys-
tem. This can dramatically increase the speed of read operations,
but at the cost of opening access to the underlying block data of
all blocks to the client. When this feature is enabled, clients must
be running as the same user as the datanode or be in a group that
has read access to block data. Both scenarios break some of the
invariants assumed by the security model and can inadvertently
expose data to malicious applications. Take great care when ena-
bling this feature on a secure cluster or setting dfs.data
node.data.dir.perm to anything other than 0700.

Example: 0700

See Example 6-5 for a sample hdfs-site.xml file configured for security.

Example 6-5. Updating hdfs-site.xml to enable Hadoop security

<?xml version="1.0"?>
<configuration>

 <property>
 <name>dfs.block.access.token.enable</name>
 <value>true</value>
 </property>

 <!-- NameNode security config -->

Kerberos and Hadoop | 149

www.it-ebooks.info

https://issues.apache.org/jira/browse/HDFS-2246
http://www.it-ebooks.info/

 <property>
 <name>dfs.namenode.keytab.file</name>
 <value>hdfs.keytab</value>
 </property>

 <property>
 <name>dfs.namenode.kerberos.principal</name>
 <value>hdfs/_HOST@MYREALM.MYCOMPANY.COM</value>
 </property>

 <property>
 <name>dfs.namenode.kerberos.https.principal</name>
 <value>host/_HOST@MYREALM.MYCOMPANY.COM</value>
 </property>

 <!-- DataNode security config -->

 <property>
 <name>dfs.datanode.keytab.file</name>
 <value>hdfs.keytab</value>
 </property>

 <property>
 <name>dfs.datanode.kerberos.principal</name>
 <value>hdfs/_HOST@MYREALM.MYCOMPANY.COM</value>
 </property>

 <property>
 <name>dfs.datanode.kerberos.https.principal</name>
 <value>host/_HOST@MYREALM.MYCOMPANY.COM</value>
 </property>

</configuration>

Lastly, mapred-site.xml must be configured; in many ways, it has similar parameters to
hdfs-site.xml.

mapreduce.jobtracker.kerberos.principal
Just like dfs.namenode.kerberos.principal, this specifies the Kerberos principal
the jobtracker uses during authentication. Again, the key for this principal must
be in the keytab specified by mapreduce.jobtracker.keytab.file. The _HOST to-
ken may be used in the instance part of the principal, in which case, it will be
interpolated with the fully qualified domain name of the machine on which the
jobtracker is running.

Example: mapred/_HOST@MYREALM.MYCOMPANY.COM

mapreduce.jobtracker.kerberos.https.principal
This parameter is used to specify the Kerberos principal for the embedded HTTPS
server, just as its HDFS siblings.

Example: host/_HOST@MYREALM.MYCOMPANY.COM

150 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://www.it-ebooks.info/

mapreduce.jobtracker.keytab.file
The keytab file containing the jobtracker principal key. See dfs.namenode.ker
beros.principal on page 147 for more information.

Example: /etc/hadoop/conf/mapred.keytab

mapreduce.tasktracker.kerberos.principal
The Kerberos principal used by the tasktracker. See mapreduce.jobtracker.ker
beros.principal on page 150 for more information.

Example: mapred/_HOST@MYREALM.MYCOMPANY.COM

mapreduce.tasktracker.kerberos.https.principal
The Kerberos principal used by the embedded HTTPS server. See mapreduce.job
tracker.kerberos.https.principal on page 150 for more information.

Example: host/_HOST@MYREALM.MYCOMPANY.COM

mapreduce.tasktracker.keytab.file
The keytab file containing the tasktracker principal key. See mapreduce.job
tracker.keytab.file on page 151 for more information.

Example: /etc/hadoop/conf/mapred.keytab

mapred.task.tracker.task-controller
As we’ve seen, the tasktracker has a few strategies for launching child task JVMs.
In simple security mode, the tasks are launched as the same user as the tasktracker
itself, while in secure mode, the setuid task-controller executable is used. The
tasktracker uses a Java plug-in that controls which strategy is used, which is defined
by this parameter. By default, mapred.task.tracker.task-controller specifies the
class name org.apache.hadoop.mapred.DefaultTaskController, which simply exe-
cutes the child task with the same permissions as the parent tasktracker. In the case
of a secure cluster, this should instead be set to org.apache.hadoop.mapred.Linux
TaskController, which is the implementation that knows about the setuid task-
controller executable.

Example: org.apache.hadoop.mapred.LinuxTaskController

mapreduce.tasktracker.group
In secure mode, the setuid task-controller, after sanitizing its environment,
changes its effective user id and group id to the user running the MapReduce job
and a specified group, respectively. This parameter is what specifies the group that
should be used when this occurs. It’s important that the effective group be con-
trolled so the user task has the proper permissions when it creates files (for example,
in the Hadoop log directory). This value should always match the effective group
of the tasktracker itself. If it doesn’t, the task-controller will exit with a non-zero
status. This isn’t important with simple security mode because the task-control
ler isn’t used.

Example: mapred

Kerberos and Hadoop | 151

www.it-ebooks.info

http://www.it-ebooks.info/

The task-controller’s configuration is separate from the three primary XML files and is
required for it to function properly. Located in the Hadoop configuration directory,
taskcontroller.cfg is a plain text file that works very much like a Java property file: one
key value pair per line, separated by an equals sign. Unlike a property file, however,
whitespace is not permitted between the equals sign and its key or value. See Exam-
ple 6-6 for a sample taskcontroller.cfg. The following parameters are supported.

mapred.local.dir (required)
A comma separated list of directories used for temporary data during MapReduce
jobs. This should be the same list as specified in mapred.local.dir in the mapred-
site.xml file. See mapred.local.dir on page 121 for more information.

hadoop.log.dir (required)
The directory in which log data should be written. This should be the same path
as specified in HADOOP_LOG_DIR in the hadoop-env.sh file. See “Logging Configura-
tion” on page 90 for more information.

mapred.tasktracker.group (required)
The group that the tasktracker process runs as. In CDH, this is mapred and whatever
user the administrator chooses in Apache Hadoop. This group should not contain
any users other than the user the tasktracker runs as. If it does, those users will be
able to impersonate any user with a user id greater than what is specified in
min.user.id.

min.user.id (required)
The minimum uid of the user to run a task as. If a user with uid below this value
submits a MapReduce job, the task-controller will refuse to execute the tasks,
exiting with a non-zero status code, which will cause all tasks to fail. The default
value of this is 1000 in CDH while Apache Hadoop has no default.

A number of Linux distributions, notably CentOS and RHEL, start
the uid numbering of user accounts at 500. This means that the
CDH default of 500 will cause all tasks to fail by default.

banned.users
Specific users can be banned from executing tasks on the cluster. By default, CDH
includes users mapred, hdfs, and bin in this list whereas Apache Hadoop leaves this
empty. At a minimum, you should always include user hdfs. By doing so, you can
avoid the potential attack vector where a task running as hdfs could read or modify
HDFS blocks stored on the local disks, circumventing the permission checks per-
formed by the namenode.

Example 6-6. Sample taskcontroller.cfg

mapred.local.dir=/data/1/hadoop/mapred/local,/data/2/hadoop/mapred/local
hadoop.log.dir=/var/log/hadoop
mapreduce.tasktracker.group=mapred

152 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://www.it-ebooks.info/

banned.users=mapred,hdfs,bin
min.user.id=1000

Finally, after distributing the changed configuration files to all hosts in the cluster, you
are now ready to restart all daemons and begin testing. It is strongly recommended that
you start with the namenode and a single datanode first to make sure everything is in
working order. Watch the log files for errors, especially those related to authentication
and resolve any issues you find. Given the complexity of setting up security, it is com-
mon to miss a step the first time and have a little debugging to do. Take it slow, one
daemon at a time, and for production clusters, always have a rollback plan.

Authorization
So far, we’ve discussed only how clients identify themselves and how Hadoop authen-
ticates them. Once a client is authenticated, though, that client is still subject to au-
thorization when it attempts to perform an action. The actions that can be performed
vary from service to service. An action in the context of HDFS, for example, may be
reading a file, creating a directory, or renaming a filesystem object. MapReduce actions,
on the other hand, could be submitting or killing a job. Evaluating whether or not a
user is permitted to perform a specific action is the process of authorization.

HDFS
Every filesystem operation in HDFS is subject to authorization. In an effort to exploit
existing knowledge, HDFS uses the same authorization model as most POSIX filesys-
tems. Each filesystem object (such as a file or directory) has three classes of user: an
owner, a group, and “other,” which indicates anyone who isn’t in one of the two pre-
vious classes. The available permissions that can be granted to each of the three classes
on an object are read, write, and execute, just as with Linux or other Unix-like systems.
For example, it is possible to grant the owner of a file both read and write privileges.
These permissions are represented by a single octal (base-8) integer that is calculated
by summing permission values (see Table 6-3).

Table 6-3. HDFS permission values

Permission Value

Read 4

Write 2

Execute 1

Using our previous example, to indicate the file owner has both read and write privi-
leges, we would sum the read permission value of 4 and the write permission value of
2, giving us 6, which represents the combination of the two privileges. This represen-
tation is always unambiguous. That is, it is impossible for two combinations to yield

Authorization | 153

www.it-ebooks.info

http://www.it-ebooks.info/

the same sum. The special value of 0 (zero) means that a user has no permissions.
Noteworthy, it is not meaningful (nor is it illegal) for a file to be executable in HDFS,
although directories use the execute permission to indicate that a user may access its
contents (if they know the name of the contained file or directory already) and metadata
information (then read permission is also required to retrieve the children’s names).

To represent the three classes of user—owner, group, and other—we use three integers,
one for each class, in that order. For instance, a file that allows the owner to read and
write, the group to read, and other users to read, would have the permissions 644; the
6 indicates read and write for the owner (4 + 2), whereas the subsequent fields are both
4, indicating only the read permission is available. To indicate the owner of a directory
has read, write, and execute permissions, but no one else has access, the permissions
700 would be used.

In addition to the above permissions, three other special permissions exist: setuid,
setgid, and sticky mode (or “the sticky bit”). The setuid permission in Linux changes
the process effective user id to that of the file owner when the file is executed. Since
files in HDFS cannot be executed, granting this means nothing. The setgid permission,
when set on a directory in Linux, forces the group of all immediate child files and
directories to that of the parent directory. However, this is the default behavior in
HDFS, so there’s no need to explicitly set the setgid permission on a directory. Like
setuid, there is no meaning to setting setgid on a file in HDFS because files cannot be
executed. The final permission is called the sticky bit and when set on a directory,
means that only the owner of a file in that directory may delete or rename the file, even
if another user has access to do so (as granted by the write permission on the directory
itself). The exception to this rule is that the HDFS super user and owner of the directory
always have the ability to perform these actions. This is exactly the behavior one desires
for temporary directories where all users need to be able to write data, but only the
owner of that data should be able to remove or change it. These permissions are granted
by using an optional fourth octal number placed to the left of the standard set of three.
Just like the read, write, and execute permissions, setuid, setgid, and sticky bit each
have a designed value that may be summed to grant multiple permissions. (See Ta-
ble 6-4.)

Table 6-4. The setuid, setgid, and sticky bit permissions

Permission Value

Setuid 4

Setgid 2

Sticky bit 1

A value of 0 (zero) removes these permissions, if they are set. Example 6-7 shows typical
HDFS interaction with Kerberos authentication and permissions set.

154 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://www.it-ebooks.info/

Example 6-7. Using the sticky bit permission in HDFS

Authenticate as user esammer
[esammer@hadoop01 ~]$ kinit esammer
Password for esammer@PE.HADOOP.CLOUDERA.COM:
Create a directory called test
[esammer@hadoop01 ~]$ hadoop fs -mkdir /user/esammer/test
Change the permissions to enable sticky bit and set:
owner: read, write, execute
group: read, write, execute
other: read, write, execute
[esammer@hadoop01 ~]$ hadoop fs -chmod 1777 /user/esammer/test
Create an empty file as esammer
[esammer@hadoop01 ~]$ hadoop fs -touch /user/esammer/test/foo
Authenticate as user esammer2
[esammer@hadoop01 ~]$ kinit esammer2
Password for esammer2@PE.HADOOP.CLOUDERA.COM:
Attempt to remove the file foo.
esammer@hadoop01 ~]$ hadoop fs -rmr /user/esammer/test/foo
rmr: org.apache.hadoop.security.AccessControlException: Permission denied by sticky ↵
 bit setting: user=esammer2, inode="/user/esammer/test/foo":esammer:hadoop:-rw-r--r--
Oops. The sticky bit stopped us from removing the file. Let's create a file of
our own called bar.
[esammer@hadoop01 ~]$ hadoop fs -touchz /user/esammer/test/bar
Switch back to user esammer.
[esammer@hadoop01 ~]$ kinit esammer
Password for esammer@PE.HADOOP.CLOUDERA.COM:
We can see both files...
[esammer@hadoop01 ~]$ hadoop fs -ls /user/esammer/test/
Found 2 items
-rw-r--r-- 3 esammer2 hadoop 0 2012-04-25 13:53 /user/esammer/test/bar
-rw-r--r-- 3 esammer hadoop 0 2012-04-25 13:52 /user/esammer/test/foo
But because user esammer owns the directory, we can delete esammer2's file!
[esammer@hadoop01 ~]$ hadoop fs -rmr /user/esammer/test/bar
Deleted hdfs://hadoop01.cloudera.com/user/esammer/test/bar

MapReduce
Hadoop MapReduce, like HDFS, has a few different classes of users (four, to be exact).

Cluster owner
The cluster owner is the OS user that started the cluster. In other words, this is the
user the jobtracker daemon is running as. This is normally user hadoop for Apache
Hadoop and mapred for CDH. Like the HDFS super user, the MapReduce cluster
owner is granted all permissions implicitly and should be used rarely, if ever, by
administrators.

Cluster administrator
One or more users may be specified as cluster administrators. These users have all
of the same powers as the cluster owner, but do not need to be able to authenticate
as the Linux user that started the cluster. Granting users this power allows them
to perform administrative operations while still retaining the ability to audit their

Authorization | 155

www.it-ebooks.info

http://www.it-ebooks.info/

actions individually, rather than having them use a shared account. Use of a shared
account is also discouraged as it creates the need to share authentication creden-
tials.

Queue administrator
When a job is submitted to the jobtracker, the user specifies a queue. The queue
has an access control list (ACL) associated with it that defines which users and
groups may submit jobs, but also which users may administer the queue. Admin-
istrative actions may be changing the priority of a job, killing tasks, or even killing
entire jobs.

Job owner
Finally, the job owner is the user who submitted a job. A job owner always has the
ability to perform administrative actions on their own jobs.

Defining the cluster owner is a side effect of simply starting the jobtracker so there’s
no explicit configuration of this user, per se. Cluster and queue administrators, on the
other hand, are defined by the mapred-site.xml and mapred-queue-acls.xml files, re-
spectively. Since these files define access control, it’s important to make sure the files
and their parent directory are writable only by the cluster owner or root. If users will
be submitting jobs on the same machine as the jobtracker, the files and their parent
directory must be world readable to allow users to submit jobs because they contain
information used by the client as well as the server.

An access control list in Hadoop is a space-separated pair of comma-separated lists.
The first list is the users that allowed to perform a given action; the second is the list
of groups that are allowed to perform an action. It is possible for either or both of the
lists to be empty, in which case, no users or groups may perform an action. If the ACL
is simply an asterisk, everyone is allowed to perform an action. The table in Exam-
ple 6-8 shows a few examples of setting access control lists for services.

Example 6-8. Sample Hadoop access control lists and their meanings

ACL Description

“*” Everyone is permitted.

" " (a single space) No one is permitted.

“user1,user2 group1,group2,group3” Users 1 and 2, and groups 1, 2, and 3 are permitted.

“user1 " (a user followed by a single space) User 1 is permitted, but no groups.

" group1” (a single space followed by a group) Group 1 is permitted, but no users.

The quotes are not part of the ACL and should not be typed. They are
shown here to highlight the space character.

156 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://www.it-ebooks.info/

By default, Hadoop MapReduce is wide open; any user may submit a job to any queue,
and all users may perform administrative actions. For single-purpose clusters in a trus-
ted environment, this is fine, but for multitenant clusters, this doesn’t work. There are
a number of parameters and extra files that need to be configured to define and enable
queue ACLs. The first step is to modify mapred-site.xml to enable ACLs, define cluster
administrators, and specify the queues that should exist.

mapred.acls.enabled
Access control lists must be globally enabled prior to use. Hadoop does not enforce
ACLs, even if they’re defined, if this parameter is not set to true.

Example: true. Default: false

mapred.cluster.administrators
An ACL that defines users and groups that are cluster administrators.

Example: “esammer mradmins,ops” (without quotes). Default: undefined.

mapred.queue.names
Before attaching ACLs to queues, all queues must be predefined. This is done by
simply providing a comma-separated list of queue names to the
mapred.queue.names parameter. There should be no spaces between names. Some
scheduler plug-ins—notably the FIFO scheduler, which is the default—do not
support multiple queues. Both the capacity scheduler and fair scheduler plug-ins
support multiple queues.

Example: research,production-etl,adhoc. Default: default.

While the mapred-queue-acls.xml file is reloaded dynamically, changes
to mapred-site.xml require daemons be restarted before changes take
effect.

The next step is to define ACLs for the queues named in mapred.queue.names. This must
be done in the mapred-queue-acls.xml file, also located in the Hadoop configuration
directory. Like the primary three configuration files, mapred-queue-acls.xml follows the
same format; an XML file with a top level configuration element, which contains zero
or more property elements, each of which is a name value pair. Each MapReduce queue
is configured with an ACL, as described above, in a separate configuration property
where the name of the property is mapred.queue.queue-name.privilege and the value is
the ACL. The queue-name should be one of the queue names from the
mapred.queue.names property, and privilege is one of the available queue privileges
(see Table 6-5).

Authorization | 157

www.it-ebooks.info

http://www.it-ebooks.info/

Table 6-5. MapReduce queue privileges

Privilege Description

acl-submit-job An ACL that controls who may submit MapReduce jobs to a
queue.

acl-administer-jobs An ACL that controls who may perform administrative actions
on jobs in a queue.

If, for example, you want to create a production-etl queue and grant user jane and
anyone in the prod group access to submit jobs to it, production-etl must be listed in
mapred.queue.names in mapred-site.xml, and mapred.queue.production-etl.acl-sub
mit-job should be set to "jane prod" (without quotes) in mapred-queue-acls.xml, as in
Example 6-9.

Example 6-9. Sample mapred-queue-acls.xml file

<?xml version="1.0"?>
<configuration>

 <!--
 Allow user jane and group prod to submit jobs to the
 production-etl queue.
 -->

 <property>
 <name>mapred.queue.production-etl.acl-submit-job</name>
 <value>jane prod</value>
 </property>

 <!--
 Allow no users, and groups prod and hadoop-admins, to
 administer jobs in the production-etl queue. Note the
 space after the opening value element. This means the
 user list is empty.

 The cluster owner, cluster admins, and job owner can
 always administer their jobs.
 -->

 <property>
 <name>mapred.queue.production-etl.acl-administer-jobs</name>
 <value> prod,hadoop-admins</value>
 </property>

 <!-- Many queues may be defined... -->

</configuration>

The queues described thus far are independent of the capacity and fair scheduler plug-
ins, although they are related. None of the three scheduler plug-ins (including the de-
fault FIFO scheduler) provide access control over which jobs are submitted to which

158 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://www.it-ebooks.info/

queues. If you need this kind of functionality, the expectation is that the queue names,
as defined by mapred.queue.names, will match the queues configured in the scheduler
plug-in. This allows job submission and queue ACLs to be implemented generically,
while the order and machines on which tasks are executed is controlled by the plug-in.
In Chapter 7, we’ll cover how each of the schedulers may be configured to suit different
environments and use cases.

Other Tools and Systems
Many of the projects commonly used with Hadoop (the so-called ecosystem projects)
rely simply on the HDFS and MapReduce access controls. This makes a lot of sense
because some of these tools are just clients of the two Hadoop services. Pig, for instance,
is a good example of this. A user writes a Pig script, which is interpreted on the client
machine, logical and physical execution plans are created, and a series of MapReduce
jobs are submitted to the cluster. The data accessed by the job is commonly a directory
of files in HDFS and is therefore subject to the filesystem permissions of the user who
submitted the job. In other words, there’s nothing else to which access must be
controlled.

But that, of course, is not always the case. Other ecosystem projects do have additional
information or higher level constructs that must be secured in multiuser environments.
Hive is a good example of this. While also a client-side application, Hive stores addi-
tional metadata about the data in HDFS and presents a relational database style ab-
straction3 to the end user. This presents an interesting case where, even if we were to
restrict a user from accessing the data contained in HDFS, they would still be able to
see the metadata—the table names, field names and types, and so forth—managed by
Hive. In multitenant environments, this may not be acceptable. Disclosing information
about users’ datasets to one another may be sufficient to reveal what they are doing or
how. Because of this risk, each of the ecosystem projects, including Hive, are respon-
sible for protecting any metadata they maintain.

Each ecosystem project has different controls for protecting metadata and must be
configured independently. It isn’t feasible to cover all of the nuances of each of these
projects in detail here. This is meant to provide references for further reading.

Apache Hive

Because HiveQL bakes down into MapReduce jobs, operations are subject to all of the
access controls of MapReduce queue ACLs and HDFS file permissions. Additionally,
Hive provides RDBMS style users, groups, and roles, as well as GRANT statements to
control access to its so-called database objects. This enables finegrained access control

3. This does not mean Hive makes Hadoop a relational database. Instead, it presents a familiar SQL-like
interface to users to query data, but its execution engine is still MapReduce and subject to all the inherent
functional and performance characteristics therein.

Authorization | 159

www.it-ebooks.info

http://www.it-ebooks.info/

to higher order constructs like tables, columns, or even views. Of course, this is enforced
only at the time the HiveQL query is written and submitted; the files in HDFS have no
knowledge of this metadata and as a result, it can’t be enforced further down the stack.
Remember that for MapReduce jobs to work, the user submitting the job must be able
to access the files in HDFS. This creates an interesting problem where a user may not
have permission to view the data in a column of a table from Hive’s perspective, but
the user must have access to the complete files in HDFS, thereby allowing them to
circumvent the object-level policy. We’ll see possible solutions to this problem in
“Tying It Together” on page 164.

For more information about configuring Hive object level access control, see http://
cwiki.apache.org/confluence/display/Hive/LanguageManual+Authorization.

Apache HBase

HBase is a distributed, column-oriented, low latency system for storing enormous
tables, both in terms of rows and columns. Already a huge topic, HBase, as of version
0.92.x (also included in CDH4), has support for performing access control checks on
each operation issued to a table. These operations include get (reading a record), put
(storing a record), scan (reading a range of records), and delete, as well as the admin-
istrative or data definition operations like creating tables. HBase security is imple-
mented as a coprocessor—a plug-in that, in many ways, works like a database trigger,
firing authorization checking code before each operation is performed.

Users and groups may be granted permission to perform any combination of the above
operations at the table, column family, or column qualifier granularity. In other words,
it is possible to restrict access to tables, groups of columns, or individual columns within
a group.

For more information about configuring HBase security, see http://hbase.apache.org/
book/security.html or https://ccp.cloudera.com/display/CDH4DOC/HBase+Security
+Configuration for CDH users.

Apache Oozie

Oozie is a workflow system specifically built to work with Hadoop and MapReduce.
Users (usually developers) write workflows in an XML language that define one or more
MapReduce jobs, their interdependencies, and what to do in the case of failures. These
workflows are uploaded to the Oozie server where they are scheduled to run or executed
immediately. When Oozie executes a MapReduce job as part of a workflow, it is run
by the Oozie server, which keeps track of job-level failures and status.

In a secure environment, the Oozie server must authenticate via Kerberos to submit
MapReduce jobs to the cluster. It’s important, however, that these jobs execute as the
user that created the workflow and not as the user running the Oozie server. In order
to launch MapReduce jobs with the proper identity, each workflow defines the user
and group with which the jobs should run. Additionally, in a secure environment, the

160 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://cwiki.apache.org/confluence/display/Hive/LanguageManual+Authorization
http://cwiki.apache.org/confluence/display/Hive/LanguageManual+Authorization
http://hbase.apache.org/book/security.html
http://hbase.apache.org/book/security.html
https://ccp.cloudera.com/display/CDH4DOC/HBase+Security+Configuration
https://ccp.cloudera.com/display/CDH4DOC/HBase+Security+Configuration
http://www.it-ebooks.info/

value of the specified user and group are checked against the identity of the authenti-
cated user submitting the workflow. In other words, if I—authenticated as user esammer
—attempt to submit a workflow to Oozie that specifies user janedoe, Oozie will refuse
to accept the workflow.

Oozie has a very simple security model based on the notion of users and groups. All
users can see all workflows, but only modify those owned by themselves or a group to
which they belong. Any number of users may be designated as administrators who,
additionally, may modify any workflows, and perform administrative functions. With
its security features disabled, all users are effectively administrators in Oozie.

For more information about how Oozie security, see http://incubator.apache.org/oozie/
docs/3.1.3/docs/AG_Install.html or for CDH, https://ccp.cloudera.com/display/
CDH4DOC/Oozie+Security+Configuration.

Hue

Hue is a web-based application that provides an end user−facing application that can
be used to interact with a Hadoop cluster. Out of the box, Hue comes with a job
browser, job designer, filesystem browser, and Beeswax, a Hive user interface from
which users can execute HiveQL queries. Like most web applications, Hue provides
username and password authentication, and (Hue) application level access control lists.
Users are assigned to groups and groups are given permission to launch specific Hue
applications. Additionally, users may be marked as super users, in which case they may
launch all applications as well as administer users and privileges. As of version 2.x
(included with CDH4), Hue supports synchronization with LDAP services (Open-
LDAP and Active Directory, specifically) for both users and groups.

For more information about Hue configuration, see https://ccp.cloudera.com/display/
CDH4DOC/Hue+Security+Configuration.

Apache Sqoop

Sqoop is a tool that facilitates bidirectional exchange of data between HDFS and rela-
tional databases. With Sqoop, it’s possible to import the contents of a table, the result
of a SQL query, or even an entire database, to files in HDFS so they may be used in
MapReduce jobs. The inverse operation of exporting data residing in HDFS to tables
in an RDBMS is also fully supported for files with a known schema. Sqoop does this
by running a MapReduce job with a controlled number map tasks, each making a
number of parallel connections to a database and performing parallel SELECT or IN-
SERT/UPDATE statements (for import to Hadoop and export from Hadoop, respec-
tively). One of Sqoop’s more interesting features is its ability to accept vendor specific
plug-ins for high performance import and export. These plug-ins take advantage of
native features of the RDBMS for faster operations and drop in with no coding required
by the Sqoop user. At this time, high performance plug-ins are available for MySQL,
PostgreSQL, Oracle, Teradata, Netezza, Vertica, and SQL Server.

Authorization | 161

www.it-ebooks.info

http://incubator.apache.org/oozie/docs/3.1.3/docs/AG_Install.html
http://incubator.apache.org/oozie/docs/3.1.3/docs/AG_Install.html
https://ccp.cloudera.com/display/CDH4DOC/Oozie+Security+Configuration
https://ccp.cloudera.com/display/CDH4DOC/Oozie+Security+Configuration
https://ccp.cloudera.com/display/CDH4DOC/Hue+Security+Configuration
https://ccp.cloudera.com/display/CDH4DOC/Hue+Security+Configuration
http://www.it-ebooks.info/

Since Sqoop jobs run as MapReduce jobs, they can be controlled in all the same ways
as any other MapReduce job. This includes managing HDFS permissions on files and
directories to control access to data. The database credentials must be supplied with
each invocation of the sqoop command-line tool.

Frequently, users want to perform incremental imports or exports of data. Sqoop sup-
ports a number of strategies for determining which rows have changed since the last
run, but all of them require maintaining some kind of state between runs. Users may
decide to manually preserve this information somewhere, but for recurring jobs in pro-
duction, this usually isn’t realistic. Another option is to use Sqoop’s saved job feature,
which stores both connection credentials and incremental state information in a di-
rectory on the local filesystem of the client machine in what is called the metastore.
Administrators and users can then execute Sqoop jobs by their saved job name rather
than requiring all the command-line options upon each invocation. If saved jobs are
used, the metastore directory must be protected using standard filesystem permissions
as you would with other sensitive files on the system, especially if you decide to allow
Sqoop to also store database passwords.

To learn more about Sqoop, saved jobs, and managing Sqoop’s metastore, see the full
documentation at http://sqoop.apache.org/docs/1.4.1-incubating/index.html or http://
archive.cloudera.com/cdh/3/sqoop/SqoopUserGuide.html for CDH users.

The Sqoop community is currently working on a proposal for Sqoop 2,
which maintains the functionality of Sqoop, but realizes it as a persistent
service rather than a command-line tool. For more information on
Sqoop 2, be sure to check out https://cwiki.apache.org/confluence/dis
play/SQOOP/Sqoop+2.

Apache Flume

Apache Flume is a distributed, fault tolerant, scale out streaming data collection system
commonly used for collecting log events. Unlike many of the other Hadoop ecosystem
projects, Apache Flume does not strictly require Hadoop, although it complements
HDFS very well. Flume uses the abstraction of sources, channels, and sinks to wire
together data flows that transport data from one end point to another. Some of the
more common sources are an Avro RPC source to which applications can speak di-
rectly, syslog, a raw netcat-style source, and a source that executes a command and
reads from its standard output. Sources put data into channels that act as queues that
support different strategies that effect durability. Sinks take events from channels and
depending on the implementation, store them in HDFS, forward them to another
Flume agent over the network, and insert them into HBase or any other data store. It
is also simple to implement custom sources, channels, sinks, and other components
within Flume for special use cases.

162 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://sqoop.apache.org/docs/1.4.1-incubating/index.html
http://archive.cloudera.com/cdh/3/sqoop/SqoopUserGuide.html
http://archive.cloudera.com/cdh/3/sqoop/SqoopUserGuide.html
https://cwiki.apache.org/confluence/display/SQOOP/Sqoop+2
https://cwiki.apache.org/confluence/display/SQOOP/Sqoop+2
http://www.it-ebooks.info/

Flume’s role in the ecosystem is one of data ingestion and for most users, this means
writing to HDFS or HBase. Since data is written to these kinds of systems, it’s important
that administrators be able to control the permissions on the resultant files. The proper
way of dictating the permissions with which data is written is controlled by the con-
figured sink and will vary from implementation to implementation. The HDFS sink,
for example, uses the Hadoop library and just as any other HDFS client, takes on the
identity of the effective user ID of the process. Flume’s HDFS sink also fully supports
Kerberos authentication using a keytab, in which case, the principal becomes the owner
of files in HDFS.

Flume supports a wide array of data ingest configuration options. For more informa-
tion, see http://flume.apache.org/FlumeUserGuide.html or http://archive.cloudera.com/
cdh4/cdh/4/flume-ng/FlumeUserGuide.html for CDH users.

Apache ZooKeeper

Like Flume, Apache ZooKeeper doesn’t have a direct dependency on Hadoop, but a
number of ecosystem projects do make use of it. ZooKeeper is a quorum-based, highly
available, distributed coordination service used to build centralized configuration stor-
age, naming, synchronization, leader election, and group membership services. Those
building specialized distributed systems may find ZooKeeper appealing, but for many,
it is seen as infrastructure for HBase and some features of HDFS.

ZooKeeper organizes data into ZNodes. Like files in a traditional filesystem, ZNodes
can store arbitrary bytes, have access control lists associated with them, and can be
organized hierarchically. In ZooKeeper, there is no distinction between a “file” and a
“directory” ZNode; a single ZNode may have data (like a file) but also have child ZNo-
des (like a directory). Since ZNodes are very commonly used to store internal state of
other applications and critical coordination information, they can be protected by
ACLs, as mentioned earlier. In keeping with the filesystem metaphor, ZooKeeper offers
a shell where administrators can execute commands to perform the equivalent of the
chmod and chown commands.

For more information about ZooKeeper, see http://zookeeper.apache.org/doc/r3.4.3/ or
http://archive.cloudera.com/cdh4/cdh/4/zookeeper/ for CDH users.

Apache Pig, Cascading, and Crunch

Many of the Hadoop ecosystem projects are client side tools or languages that bake
down to MapReduce jobs. This class of projects, of which Pig, Cascading, and Crunch
are all members, run entirely on a client machine and maintain no external metadata.
These projects can be seen as a facade for Hadoop MapReduce, simplifying the pro-
gramming model and providing a higher level language in which to perform operations.
Each with a slightly different way of interpreting the problem of making MapReduce
accessible, they are fundamentally similar in their implementation. For Hadoop ad-
ministrators, these projects are trivial to support as they provide no additional opera-

Authorization | 163

www.it-ebooks.info

http://flume.apache.org/FlumeUserGuide.html
http://archive.cloudera.com/cdh4/cdh/4/flume-ng/FlumeUserGuide.html
http://archive.cloudera.com/cdh4/cdh/4/flume-ng/FlumeUserGuide.html
http://zookeeper.apache.org/doc/r3.4.3/
http://archive.cloudera.com/cdh4/cdh/4/zookeeper/
http://www.it-ebooks.info/

tional overhead beyond MapReduce, and by extension, no additional security
constructs.

Tying It Together
With an ever-growing ecosystem of projects forming around Hadoop, each with its
own requirements, it’s hard to understand how these pieces come together to form a
single data processing platform. Beyond simply making these tools function, adminis-
trators are responsible for ensuring a singular identification, authentication, and au-
thorization scheme is applied consistently and in accordance with data handling poli-
cies. This is a significant challenge, to use a well-worn, albeit applicable, cliche. How-
ever, there are a few things one can do to reduce the pain of building a secure, shared
Hadoop platform.

To secure or not to secure
Do your homework and make an informed decision about whether or not you need
Hadoop security. It is not as simple as setting hadoop.security.authentication to
kerberos and getting on with life. The repercussions of Kerberizing a cluster are
significant in that every client of the cluster must be able to properly handle au-
thentication. It’s easy to say and difficult to make a reality. Can you trust clients
to identify themselves truthfully? If not, you have your work cut out for you. Create
a map of all access points to the cluster, understand which must support multiple
users through a single process, and create a strategy to handle authentication.
There’s no universal answer, although there are some established patterns you can
use.

All users and groups on all nodes
Enabling secure mode means that every (OS) user that submits a MapReduce job
must have an account on every machine in the cluster. The account may be locked
so that it isn’t possible to log in to the machine, but the account must exist and
have a valid shell. One way to do this is by brute force; maintain user accounts by
hand on each machine. This simply doesn’t scale and will cause trouble for you
down the road. Instead, use a configuration management system like Puppet or
Chef, use LDAP for centralized account management, or use a commercial tool to
maintain accounts. You can also save yourself some heartache by ensuring users
have the same UIDs on all machines as well.

Run a local Kerberos KDC
Set up a local installation of MIT Kerberos and configure the Hadoop cluster as its
own realm. Configure each machine in the cluster to use the realm you’ve chosen
as its default realm (this will save you endless pain later as it obviates the need to
configure principal rewrite rules). If you have a global identity management system
like Active Directory, configure a one way cross realm trust from the local KDC to
the global system so users can successfully authenticate. While this seems odd at
first, Hadoop has proven its ability to perform a distributed denial of service attack

164 | Chapter 6: Identity, Authentication, and Authorization

www.it-ebooks.info

http://www.it-ebooks.info/

on corporate identity infrastructure simply by running a MapReduce job. Remem-
ber that every RPC requires communication with the KDC in secure mode and
with a large enough cluster, with many tasks it’s possible to create a noticeable
impact on shared infrastructure (one such incident rendered users incapable of
authenticating for email for a short time during an unusual spike in Hadoop ac-
tivity).

Establish an HDFS hierarchy that reflects access
Remember that the HDFS directory structure, like any other shared filesystem, is
not just an organization construct, but the way you enforce access to data. Think
about applications and access, and design accordingly. Like a relational database
schema, the filesystem directory structure can be difficult to change for production
systems. This is an area where administrators and developers must work in tandem.

Use gateway services to federate access
In scenarios where finegrained access control is required, it is useful to create gate-
way services. A gateway (or sometimes, proxy) service is a daemon that receives a
(usually higher level) request and performs an action on behalf of a user when
allowing the user to directly perform the action wouldn’t provide enough control.

A gateway, for instance, can be used to simulate column level access to files. Be-
cause all columns are stored in a single file, and the file is the level granularity with
which access control can be controlled, it is necessary to intercept operations, apply
the necessary checks, execute a modified version of the user’s request, and place
the result in a location they can access. It’s imperative that the user not be given
direct access to the source file, as this would allow access control to be circum-
vented. If, for instance, the preferred method of access was Hive, the gateway ser-
vice could take a Hive query, rewrite it, and submit it to Hive proper as a privileged
user, on their behalf.4 In many ways, this is the same idea as the sudo command,
which is familiar to many administrators. This does require custom development
and application specific knowledge, so it’s hard to make a recommendation that’s
generally applicable, but the technique is what is important.

4. Some may note that Hive has basic constructs for controlling table level access as well as creating views,
so it should be possible to create a view that doesn’t select the restricted column and give access to that
instead. The problem with this is that since the user’s MapReduce job generated by Hive runs as them,
they still must have access to the underlying file, which means if they were to go to the command line,
they could simply read the original file, circumventing the higher level controls.

Tying It Together | 165

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Resource Management

What Is Resource Management?
In a perfect world, multiple groups of users, each with jobs with different service level
agreements (SLAs), would be able to coexist on a shared system, blissfully unaware of
one another. Disk space and IO, memory, CPU time, and network bandwidth would
be limitless, and MapReduce jobs would run unimpeded by the mundane details of
competing disk access patterns, activity oscillation throughout the work day, and
poorly implemented algorithms that spew data to disk faster than your average ad-
ministrator can rap a developer across the knuckles. We don’t live in that world and
the infinite elastic utopia where the locality of terabytes (or more) of data is meaningless
is not yet upon us. The question then, is how do we create an environment where
competing interests can coexist peacefully, all the while ensuring the right jobs receive
the right resources at the right time?

Resource management is about controlling how much of a finite resource should be
allocated to a given user, group, or job. The resources—generally bisected into the
categories of storage and compute—should be appropriately distributed across what-
ever designations make sense within the larger organization. This can mean allocation
by the person for whom the work is performed, although more commonly, it is by line
of business, where each group has jobs of varying criticality. Resource allocation is
related to authentication in that we must know who someone is before we know how
much of something to allocate to them. Without authentication and authorization, a
malicious user could take more than they should have by posing as someone else. Proper
management of resources is one component of planning for, and building, a multitenant
environment.

In the context of Hadoop, the resources we are primarily concerned with are disk space
consumption and number of files in HDFS, and map and reduce slot usage, in the case
of MapReduce.

167

www.it-ebooks.info

http://www.it-ebooks.info/

HDFS Quotas
HDFS, like many filesystems, supports the notion of quotas on disk space consumption.
Administrators can specify a limit on the physical size (that is, the size after replication)
a file1 or directory in HDFS may be. This means that the organization of the directory
tree affects how quotas may be enforced on users of the system. For instance, a common
directory structure for a shared systems would include shared data sets produced by
ETL processes, business unit specific derived data sets, and private user directories for
temporary output and ad-hoc analysis, as in Example 7-1.

Example 7-1. Sample directory structure with space quotas

/
 data/ # shared data sets, machine generated, no quotas
 user-activity/
 syslog/
 purchases/
 groups/ # a directory per group / biz unit
 research/ # 20TB quota
 fraud-analysis/ # 100TB quota
 ops/ # no quota
 users/ # 50TB quota for all users
 esammer/ # 1TB quota per user...
 janedoe/
 joesmith/

Setting a space quota on a directory, shown in Example 7-2, is done by using the hadoop
dfsadmin -setSpaceQuota size path command, where size is the permitted quota size
(in bytes) and path is the directory to which the quota should be applied.

Example 7-2. Set a 10GB quota on the path /user/esammer

[esammer@hadoop01 ~]$ hadoop dfsadmin -setSpaceQuota 10737418240 /user/esammer

To view the quotas for a file or directory, use the hadoop fs -count -q path command
as in Example 7-3.

Example 7-3. Viewing the quota on the path /user/esammer

[esammer@hadoop01 ~]$ hadoop fs -count -q /user/esammer
none inf 10737418240 -12702365277055 3999 9969 7902694269476 ↵
 hdfs://hadoop01.sf.cloudera.com/user/esammer

Example 7-3 requires some explanation; at the time of this writing, the command
doesn’t print the column headers. Column one is the file count quota and two is the
file count remaining column. In this example, there is no file count quota set and so an
infinite number of files may still be created. The third and fourth columns are the space

1. Due to the immutability of files in HDFS, it’s uncommon to place a quota on them. Instead, quotas are
normally placed on directories.

168 | Chapter 7: Resource Management

www.it-ebooks.info

http://www.it-ebooks.info/

quota and remaining space in bytes. Here, the space quota is 10737418240 (10GB) and
-12702365277055 bytes are remaining, meaning this directory has exceeded its quota
by more than 11TB (which is only possible because the quota was applied after the data
was already written). Any attempt to put new files into this directory are denied and
an error message is returned. The remaining fields are the total file count, directory
count, total content size (in bytes), and path, respectively.

You may notice that the math above doesn’t necessarily add up. How can a quota of
10GB minus a content size of 7TB (shown as 7902694269476 bytes in Example 7-3)
produce a quota overage of 11TB? This is because the HDFS quota is applied to the
physical (post-replication) size rather than the logical (pre-replication) size. Confusion
stems from the fact that the hadoop fs -count -q command output does not display
the post-replication size of the content. It’s also not always possible to simply multiply
the content size by the replication factor to get the post-replication size on disk as files
within the directory may not have the same replication factor. Should a user violate a
quota, he will receive an error message like that in Example 7-4.

Example 7-4. Attempting to put a file in a directory over its space quota

[esammer@hadoop01 ~]$ hadoop fs -put /etc/passwd /user/esammer/
put: org.apache.hadoop.hdfs.protocol.DSQuotaExceededException: The DiskSpace ↵
 quota of /user/esammer is exceeded: quota=10737418240 diskspace consumed=11840.0g

A final source of pain with HDFS quotas has to do with how quota accounting is per-
formed. Because HDFS is a distributed filesystem and many clients can be writing data
to a directory at once, it would be difficult to evaluate each byte written against the
remaining quota. Instead, HDFS assumes a worst-case scenario—that an entire block
will be filled when it’s allocated—which can create unintuitive error messages (see
Example 7-5) about quota violations. As an example, consider an empty directory with
a quota of 1MB. Writing a 4KB file to this directory with a block size of 128MB (which
will only occupy 12KB after replication, assuming a replication factor of 3) will actually
cause a quota violation! This is because the accounting system sees this write as po-
tentially taking 384MB (3 × the 128MB block size) and refuses the write. As a result, it
really only makes sense to specify quotas in multiples of the block size.

Example 7-5. Quota space accounting can be unintuitive

Starting with an empty directory and a 1MB quota
[esammer@hadoop01 ~]$ hadoop fs -count -q /user/esammer/quota-test
none inf 1048576 1048576 1 0 0 hdfs://hadoop01.sf.cloudera.com/user/esammer/quota-test
Attempt to put a 4KB file (replication 3, 128MB block size)
esammer@hadoop01 ~]$ du /etc/passwd
4 /etc/passwd
An exception is thrown telling us the disk space consumed is 384MB
even though we know it will only occupy 12KB!
[esammer@hadoop01 ~]$ hadoop fs -put /etc/passwd /user/esammer/quota-test/
12/06/09 16:23:08 WARN hdfs.DFSClient: DataStreamer Exception: org.apache.hadoop
 .hdfs.protocol.DSQuotaExceededException: org.apache.hadoop.hdfs

HDFS Quotas | 169

www.it-ebooks.info

http://www.it-ebooks.info/

 .protocol.DSQuotaExceededException: The DiskSpace quota of /user/esammer/quota-test
 is exceeded: quota=1048576 diskspace consumed=384.0m

Removing the quota from a directory is done using the hadoop dfsadmin -clrSpaceQuota
path command.

Finally, HDFS supports quotas on the number of files that may be created within a
directory. This has more to do with the architecture of the namenode, notably its re-
quirement to fit all filesystem metadata in memory. Using file count quotas, it’s possible
to prevent users or processes from monopolizing the namenode resources and poten-
tially causing a service interruption. The commands to set and clear file count quotas
are similar to space quotas: hadoop dfsadmin -setQuota number path and hadoop dfsad
min -clrQuota path, respectively. As we’ve already seen, the hadoop fs -count -q
path displays both count and space quotas.

MapReduce Schedulers
Cluster compute capacity—the aggregate of worker node CPU, memory, network
bandwidth, and disk IO—is a finite resource. Today, Hadoop represents these resour-
ces primarily in the form of map and reduce task slots (though that is changing; see
“The Future” on page 193 for more information), as defined by administrators, as we
saw in mapred.tasktracker.map.tasks.maximum and mapred.task
tracker.reduce.tasks.maximum on page 123. Task slots (or just slots) are a proxy for
system resources. In other words, an administrator configures the number of slots on
a given machine based on some predetermined notion of what actual resources map
and reduce tasks will need. This is often difficult because jobs may have varied resource
consumption profiles, or where Hadoop is a new platform within an organization, the
profile of jobs may be entirely unknown.

Slots are shared across jobs that are executing concurrently just as the Linux kernel
shares resources between running processes. In Hadoop MapReduce, the scheduler—
a plug-in within the jobtracker—is the component that is responsible for assigning tasks
to open slots on tasktrackers. This ends up being a non-trivial problem. Accidentally
scheduling CPU, memory, or disk IO intensive tasks on the same host can cause con-
tention. Additionally, map tasks have a locality preference (they want to be on one of
the machines that has a replica of the data they are to process) that the scheduler must
take into account. Tasks also may belong to jobs submitted from different users, some
of which have service level agreements that must be met, whereas others simply want
a fair allocation of resources so they aren’t deferred indefinitely.

An easier way to understand the problem is by looking at an existing system such as a
relational database. Consider two users, each of whom submits a SQL query at roughly
the same time. What do we expect? Most would assume that both queries execute and
make progress concurrently. In fact, users are commonly unaware of one another until
such a time that there is contention for database resources. Now, consider that one of

170 | Chapter 7: Resource Management

www.it-ebooks.info

http://www.it-ebooks.info/

these users is, in fact, a billing system processing a batch of transactions while the other
is a curious analyst confirming that 18 to 25 year olds account for most mobile phone
purchases in the last 30 days. The “right” decision is probably to prioritize the billing
system operation over the analyst query, but what if the analyst started her query first?
The point is that resource scheduling in a multiuser environment is just as important
as what resources are available in aggregate.

When a MapReduce job is executed by the client, a list of input splits is first computed.
Each split is a range of the data set to process, as determined by the input format. The
jobtracker creates a map task for each input split and based on the job configuration,
adds these tasks to a designated queue. The scheduler plug-in is what decides what
tasks, from what queues, should be processed on what tasktrackers, in what order.
Because there are different scheduling algorithms, each with their own benefits and
optimizations, there are multiple scheduler plug-ins an administrator can choose from
when configuring a cluster. Only one scheduler at a time may be configured, however.

It’s important to point out that tasks within a job can always be reordered. There’s no
guarantee that map task 1 will execute before map task 2 because given a large enough
cluster, all map tasks could potentially execute in parallel. In fact, that’s the entire point
of MapReduce: to achieve parallelism at the framework layer so the developer need not
concern himself with the intricacies of scheduling and failure handling. This can be
strange at first because when we think about processing a file, we tend to think of it
occurring linearly from byte zero through to the end of the file. Freedom to reorder
map tasks allows the framework to make placement decisions based not just on order
of task arrival, but the currently available resources (in this case, map slots).

Consider the scenario where a tasktracker has available slots to run map tasks. The
scheduler could simply schedule the next map task in line on that machine, but there’s
a significant chance that the data that map task is assigned to process is not local to
that machine. Instead, the jobtracker looks through the queued map tasks and attempts
to find a task that has a preference for the given machine. It’s possible for the jobtracker
to do this because each map task includes the range of the file it is to process and
combined with the HDFS block size of the file, the jobtracker can figure out which
block contains that portion of the file. The jobtracker also communicates with the
namenode to figure out which hosts contain a replica of the block in question. With
this information, it’s possible to make an informed decision about which tasks should
be scheduled based on the current available resources. Each scheduler implements data
locality logic like this in addition to other features they may support.

The FIFO Scheduler
The first in, first out (FIFO) scheduler is the default scheduler in Hadoop. As the name
implies, it uses a simple “first come, first served” algorithm for scheduling tasks. For
example, given two jobs—A and B—submitted in that order, all map tasks in job A
will execute before any tasks from job B. As job A map tasks complete, job B map tasks

MapReduce Schedulers | 171

www.it-ebooks.info

http://www.it-ebooks.info/

are scheduled (Figure 7-1). This is simple enough, but suffers from a trivial monopo-
lization problem.

Figure 7-1. A single FIFO queue

Take the hypothetical case where Jane, our resident data scientist, submits a job to find
frequently co-occuring product page views in activity data of a large commerce website
over the last month. With traffic in excess of 1TB per day, this query scans over 30TB
of data or approximately 245,760 map tasks, assuming a 128MB HDFS block size
(30TB divided by the 128MB block size yields the number of map tasks, give or take).
A 400 node cluster with 10 map slots per node would allow for 4000 map tasks to
processed concurrently, only a fraction of the almost quarter million tasks that need to
be performed to complete the query. Any job that is subsequently submitted needs to
wait a considerable amount of time before any tasks will be scheduled. From the out-
side, the job will appear to simply make no progress, which can frustrate end users and
violate SLAs for critical automated jobs.

The FIFO scheduler supports five levels of job prioritization, from lowest to highest:
very low, low, normal, high, very high. Each priority is actually implemented as a sep-
arate FIFO queue. All tasks from higher priority queues are processed before lower
priority queues and as described earlier, tasks are scheduled in the order of their jobs’
submission. The easiest way to visualize prioritized FIFO scheduling is to think of it as
five FIFO queues ordered top to bottom by priority. Tasks are then scheduled left to
right, top to bottom. This means that all very high priority tasks are processed before
any high priority tasks, which are processed before any normal priority tasks, and so
on. An obvious problem with this form of scheduling is that if high priority tasks keep
arriving, no normal priority tasks will ever be processed, for instance. Most users, when
given the chance to prioritize their jobs, will always select the highest possible option.
As a result, priorities no longer have meaning and magnanimous (and honest) users are
trampled in the process. Figure 7-2 shows three of the five queues with map tasks in
each queue. Tasks are taken and scheduled right to left, top to bottom, so even though
job 1 may have been submitted first, job 3 will actually be the first job to receive
resources.

Beyond prioritized task scheduling, the FIFO scheduler does not offer much in the way
of additional features (compared to what we’ll see later in the Capacity and Fair Sched-
ulers). For small, experimental, or development clusters, the FIFO scheduler can be
adequate. Production clusters, however, should use one of the other two schedulers
covered next.

172 | Chapter 7: Resource Management

www.it-ebooks.info

http://www.it-ebooks.info/

Configuration

The scheduler is configured by specifying the class name of the scheduler implemen-
tation to be used by the jobtracker in the mapred.jobtracker.taskScheduler parameter
in mapred-site.xml. The name of the implementation class of the FIFO scheduler is
org.apache.hadoop.mapred.JobQueueTaskScheduler. There is, however, no explicit con-
figuration changes required to use the FIFO scheduler as it’s the default.

The Fair Scheduler
The Fair Scheduler—sometimes called the Fair Share Scheduler or the FS scheduler—
is an alternative scheduler to the default FIFO scheduler. It was developed to solve
some of the problems that arise when using the FIFO scheduler in high traffic multi-
tenant environments. Primarily, these problems center on the issues of resource star-
vation and (lack of) SLA guarantees, as described earlier. As part of his doctorate re-
search, and while interning at Facebook and later Cloudera, Matei Zaharia, a Ph.D.
student at the University of California, Berkeley, developed the Fair Scheduler. It is
widely used in production environments and provides sane default behavior, out of the
box.

A few base constructs provide the framework for resource scheduling and allocation in
the Fair Scheduler. Jobs, which are submitted to queues, are placed into pools. Each
pool is assigned a number of task slots based on a number of factors including the total
slot capacity of the cluster, the current demand (where “demand” is the number of
tasks in a pool) on other pools, minimum slot guarantees, and available slot capacity.
Pools may optionally have minimum slot guarantees. These pools are said to have an
SLA, with the minimum number of slots providing the vehicle for ensuring task
scheduling within a given period of time. Beyond the minimum slot guarantees, each

Figure 7-2. Prioritized FIFO queues

MapReduce Schedulers | 173

www.it-ebooks.info

http://www.cs.berkeley.edu/~matei/
http://www.it-ebooks.info/

pool gets an equal number of the remaining available slots on the cluster; this is where
the “fair share” portion of the name comes from. By default, no pools have minimums
and so all pools simply receive an equal number of slots. Pools can be added dynami-
cally, in which case, the number of slots they receive is adjusted. A MapReduce job
property defines how the scheduler determines to which pool a job (and really, it’s
tasks) should be assigned. Again, a default value is provided, which is the property
user.name. The user.name property is set automatically by the JVM to be the operating
system user name of the process (in this case, the OS user that ran the MapReduce
client application). This yields a pool per user, each of which receives an equal number
of slots. Later we’ll get into the details of how slots are divvied up amongst pools, but
this should provide a primer on the critical concepts of the scheduler.

The scheduler uses a very specific set of rules to decide how resources (such as slots)
are assigned to pools. Each time a tasktracker heartbeats to the jobtracker and reports
available slots, the rules are evaluated and queued tasks are assigned for execution. The
following are terms we’ll use and some invariants.

Total capacity
In the context of scheduling, total capacity (or total cluster capacity) is the sum of
all slots of each type (map slots and reduce slots) regardless of their state. A cluster
with 10 tasktrackers, each with 8 map slots and 5 reduce slots, is said to have a
total map slot capacity of 80 and a total reduce slot capacity of 50. If the slot
configuration or number of tasktrackers is changed, the total cluster capacity
changes. As Hadoop allows hot addition and removal of nodes even while jobs are
running, total capacity is not a static number (and as a result, neither are its deriv-
atives below).

Total available capacity
The total available capacity is the number of open slots in a cluster. An open slot
is a slot that currently has no task assigned to it. Like total capacity, the total
available capacity is divided into map and reduce capacity. The available capacity
can never exceed the total capacity; you can never have more available slots than
total slots.

Pool
A pool is a container for a group of jobs and the recipient of resource allocation.
It is the Fair Scheduler’s analog to a relational database resource group. Rather
than configure what resources should be assigned to each job (a tedious and dif-
ficult process, as we may not know about all the jobs that could possibly exist in
advance), we assign resources to a pool and then put jobs in pools.

Demand
A pool is said to have demand if and only if there are queued tasks that should be
assigned to it. A pool with no queued tasks has no demand.

174 | Chapter 7: Resource Management

www.it-ebooks.info

http://www.it-ebooks.info/

Fair share
The “fair” number of slots a pool should receive. How fair share is determined is
described later.

Minimum share
An administrator-configured number of slots that a pool is guaranteed to receive.
By default, pools have no minimum share. This is also simply called the min-
share because of its configuration property name.

The first step in deciding how to allocate slots is to determine the total cluster capacity;
it is impossible to give out more slots than we have. Of those slots, only a subset may
be available, so the available capacity is also determined. The jobtracker knows both
of these numbers because it receives regular status updates from tasktrackers by way
of their heartbeat messages. When assigning tasks, the scheduler first looks at the de-
mand for each pool. A pool with no demand is not given any slots, even if it has a
minimum share. I can hear every reader screaming “but what if a job comes along
and...”—hang in there, we’ll get there. The scheduler gives each pool with demand its
minimum share—if there is one configured—before going any further. If the sum of
the minimum shares of pools with demand is greater than the total capacity, the min-
imum shares of each pool are adjusted pro rata. With the minimum shares satisfied,
the scheduler switches to allocating the remaining slots. This is the fair share assignment
stage of scheduling. The goal is to assign free slots as evenly as possible. If you were to
imagine each pool as a glass of water, the goal of fair share assignment is to get the
water level as even as possible across the glasses.

This is a lot to take in so it helps to consider some example scenarios with various
configurations. For each scenario, we’ll use the example cluster size from earlier—80
map slots and 50 reduce slots—unless specified otherwise.

First, let’s look at the default behavior of the Fair Scheduler where pools simply receive
their fair share of the available resources. In this case, user mary submits a MapReduce
job. The scheduler creates a pool called mary if it doesn’t already exist, because it’s
configured to use the value of the property user.name as the pool name. The pool has
demand because the MapReduce job submitted (let’s assume) has 20 map tasks that
need to be assigned and executed. Because this pool has no minimum share, we skip
that portion of the scheduling algorithm and move on to fair share assignment. With
no other pools with demand, the pool mary is given all 20 slots (the demand). Even
though another 60 map slots are available, they are not given to the pool because they
wouldn’t be used. Doing so would defeat one of the primary goals of the scheduler: to
achieve the highest possible utilization of the cluster.

Building on the previous example, assume Bob were to now also submit a job with a
map task demand of 40 tasks. A new pool named bob is created and the fair share of all
pools are adjusted. Dividing the total map task capacity of 80 slots over the two pools
yields 40 each. Mary is only using 20 slots and Bob is looking for 40. This fits fine within

MapReduce Schedulers | 175

www.it-ebooks.info

http://www.it-ebooks.info/

the available capacity and Bob receives the complete 40 slots he wants. Mary continues
uninterrupted because she’s below her 40 slot fair share (Table 7-1).

Table 7-1. Fair scheduler example allocation—demand less than fair share, total capacity of 80 slots

Pool Demand Minshare Actual Share

Mary 20 0 20

Bob 40 0 40

If Jane now comes along with a 120 map task job, a new pool is created and fair shares
are adjusted again. Each pool is technically entitled to 26 tasks, but because Mary’s
demand is only 20 and we never allocate more slots than the demand, she receives only
the 20 slots requested. This means more slots are left for other pools. Bob and Jane,
each with a demand greater than the total capacity, are not able to run all tasks at once
anymore. When there isn’t enough available capacity, tasks simply queue and are given
to a pool as slots become available, and tasks can then execute, as you’d expect. In this
particular case, shown in Table 7-2, Bob and Jane receive 30 tasks each. The case where
these three users submit their jobs at the exact same time is easy to understand, although
rarely the case. Far more often, Mary and Bob’s jobs would already be running when
Jane came along (or some other staggered submission use case). In this case, Bob is said
to be over his fair share and Jane under (or starved). When this occurs, the scheduler
allows Bob’s tasks to complete gracefully, and then gives the newly available slots to
the pool that has been starved the longest—in this case, Jane. The system self-corrects
over time, and ultimately, all demand is satisfied.

Table 7-2. Fair scheduler example allocation—total demand exceeds total capacity of 80 slots

Pool Demand Minshare Actual Share

Mary 20 0 20

Bob 40 0 30

Jane 120 0 30

So far we’ve described the ad-hoc job submission case where end users are submitting
MapReduce jobs. This is fine, but these jobs are not incredibly time-sensitive. Let’s
now assume a pool named production exists where automated ETL jobs run regularly.
It’s important that each job is given a certain number of map slots in order to complete
within a specified window of time (which, of course, assumes you know the average
time of each map task and approximately how many tasks each iteration of the job
requires, but that’s another story). As an administrator, we configure this pool to have
a minimum map share of 50 slots of the total 80.

Let’s now consider what would happen with a production job with a demand of 30
map tasks—Mary with a demand of 40, and Bob with a demand of 30 (see Table 7-3).
With only 80 tasks total, we’re clearly over-subscribed. Not everyone will get what they

176 | Chapter 7: Resource Management

www.it-ebooks.info

http://www.it-ebooks.info/

want, or at least not Mary and Bob. Remember that minimum share allocation always
occurs before fair share allocation and that we never give out more than a pool’s de-
mand. In this case, production receives the requested 30 slots (because it has a mini-
mum share of 50) straight away. The remaining slots are divided according to the fair
share assignment, which results in both Mary and Bob receiving 25 slots.

Table 7-3. Fair scheduler example allocation—demand less than minshare, total capacity of 80 slots

Pool Demand Minshare Actual Share

Mary 40 0 25

Bob 30 0 25

Production 30 50 30

If the production job were to have a demand of 60 (in excess of its 50 slot minimum
share), the numbers, shown in Table 7-4, change drastically with production receiving
its full minimum share of 50 while Mary and Bob receive only 15 slots each.

Table 7-4. Fair scheduler example allocation—demand greater than minshare, total capacity of 80
slots

Pool Demand Minshare Actual Share

Mary 40 0 15

Bob 30 0 15

Production 60 50 50

In addition to, or in place of a minimum share, pools may also have a weight. Pools
with greater weight receive more slots during fair share allocation (weight does not
impact minimum share allocation). The weight of a pool simply acts as a multiplier; a
weight of 2 means the pool receives two slots to every one slot the other pools receive.
By default, pools have a weight of 1. Let’s look at an example (Table 7-5) where Bob
has a demand of 60, Mary has a demand of 80, but Bob additionally has a weight of 2.
The effects of a pool’s weight aren’t apparent until the total demand is greater than the
total capacity. This is because when demand can be met for all jobs, there’s no need to
give one job special treatment over another. Neither pool in this example has a mini-
mum share configured in the interest of simplicity, although that is a perfectly valid
configuration.

Table 7-5. Fair scheduler example allocation—a pool with a weight, total capacity of 80 slots

Pool Demand Weight Actual Share

Mary 80 1 26

Bob 60 2 53

MapReduce Schedulers | 177

www.it-ebooks.info

http://www.it-ebooks.info/

Job priorities, like those supported in the FIFO scheduler, are also supported in the
Fair Scheduler. When a priority is set, it simply affects the weight of the job; the higher
the priority, the greater the weight, and the more tasks assigned during fair share allo-
cation. Since the priority mechanism works by way of the weight, and weight is only
accounted for during fair share allocation, the job priority does not affect minimum
share allocation.

The important take-aways from this are:

• Minimum shares are always satisfied before fair shares.

• Pools never receive more slots than their demand, even if there’s a minimum share
in place.

• During fair share assignment, slots are allocated in an attempt to “fill the water
glasses evenly.”

• Pools can a have a weight that is only considered during fair share allocation.

So far, we’ve talked only about slot allocation to pools, but it’s possible that two jobs
could be submitted to the same pool. A trivial example of a situation where more than
one job would exist in a single pool at the same time would be user Mary submitting
two MapReduce jobs. The Fair Scheduler uses another instance of itself to schedule
jobs within each pool. Remember that with its default behavior, resources are simply
divided evenly. Normally, these resources are split across pools, but within a pool,
they’re split across jobs. The end result is almost always what you want; each MapRe-
duce job within a pool makes progress without being unfair to other pools. In other
words, if Mary receives 40 slots, she can run one job with 40 slots, two jobs with 20
each, and so on. For the remaining specialized cases, it’s also possible to enforce FIFO
scheduling within a pool. This tends to make sense for pools that hold jobs that access
external resources and need to be accessed by one job at a time.

Earlier, we talked about how the Fair Scheduler does not reserve slots for pools con-
figured with minimum shares unless there is demand for those pools. Instead, the
scheduler attempts to use as much of the cluster as possible by allowing other pools to
dynamically take over that capacity when it’s not in use. When a job is submitted to a
pool with a minimum share and those slots have been given away, there are two options:
wait for the running tasks to complete and take the slots as they free up, or forcefully
reclaim the necessary resources promised by the minimum share configuration. For
jobs operating with an SLA, it’s usually not acceptable to delay execution, especially
when it’s unclear how long we’d have to wait for those resources. The Fair Scheduler
deals with this problem by preempting tasks and stealing the slots back to fulfill a
starved pool’s minimum share. To be clear, language like “forcefully reclaim” and
“preempt” are euphemisms for “kill,” in the context of Hadoop. This is because, as
we’ve seen, the unit of work in a MapReduce job is the task. It’s not possible to suspend
a task like an operating system, context switch to a higher priority task, and then resume
the lower priority task where we left off later. Instead, the scheduler simply kills a task,
which then goes back into the queue for retry at a later time. Any work performed by

178 | Chapter 7: Resource Management

www.it-ebooks.info

http://www.it-ebooks.info/

a task that is killed is thrown away. While somewhat wasteful, this does accomplish
the goal of keeping the resources where they’re needed most. To look at it another way,
it’s more wasteful to leave capacity reserved by minimum shares unused even when
there’s no work in those pools.

There are two types of preemption: minimum share preemption and fair share pre-
emption. Minimum share preemption occurs when a pool is operating below its con-
figured minimum share, whereas fair share preemption kicks in only when a pool is
operating below its fair share. Minimum share preemption is the more aggressive of
the two and is applied when a pool has been operating below its minimum share for
longer than a configurable minimum share preemption timeout. Fair share preemption,
on the other hand, is applied conservatively; a pool must be below half of its fair share
for the configured fair share preemption timeout before preemption occurs. A pool
below its minimum share will reap only up to its minimum share, whereas a pool below
50% of its fair share will reap all the way up to its full fair share during preemption.
Preemption is disabled by default and must be explicitly configured.

Normally, the scheduler assigns a single map or reduce task during each tasktracker
heartbeat, even if multiple open slots are available. The rationale behind this is that,
by doing so, tasks are spread over a wider set of physical machines. In other words, if
multiple tasks were assigned during a single heartbeat, tasks would tend to clump on
machines that reported in more recently than others. This increases the impact of a
faulty machine getting a hold of a large portion of a job. On the other hand, the down-
side to this approach is that small jobs require greater ramp up time because they must
wait for multiple tasktrackers to heartbeat in and take on tasks. Luckily, the Fair
Scheduler exposes an option that enables multiple task assignment within a single
heartbeat. Enabling this option greatly increases the perceived speed of small jobs at
the cost of potentially landing many tasks on a single misbehaving host. Those that
maintain clusters used by analysts or data scientists directly may wish to enable this
feature.

Another trick in the Fair Scheduler bag is delayed task assignment (sometimes called
delay scheduling) and is also the result of research conducted by Zaharia et al (http://
www.cs.berkeley.edu/~matei/papers/2010/eurosys_delay_scheduling.pdf). The goal of
delayed assignment is to increase the data locality hit ratio and as a result, the perfor-
mance of a job, as well as the utilization of the cluster as a whole. Delayed assignment
works by letting a free slot on a tasktracker remain open for a short amount of time if
there is no queued task that would prefer to run on the host in question. This is coun-
terintuitive at first; how could delaying task assignment increase overall job runtime?
The concept is simple: tasks execute faster when operating on local data. The amount
of delay introduced by leaving the slot available (or temporarily violating fairness) is
more than made up for by increasing the overall data locality hit rate. Leaving the slot
open temporarily sacrifices fairness by potentially selecting a task to execute in a free
slot that it is not necessarily entitled to for an increase in locality. Delayed assignment
can improve data locality and performance and in certain cases, noticeably so.

MapReduce Schedulers | 179

www.it-ebooks.info

http://www.cs.berkeley.edu/~matei/papers/2010/eurosys_delay_scheduling.pdf
http://www.cs.berkeley.edu/~matei/papers/2010/eurosys_delay_scheduling.pdf
http://www.it-ebooks.info/

Choose the Fair Scheduler over the Capacity Scheduler if:

• You have a slow network and data locality makes a significant difference to job
runtime. Features like delay scheduling can make a dramatic difference in the ef-
fective locality rate of map tasks.

• You have a lot of variability in the utilization between pools. The Fair Scheduler’s
preemption model affects much greater overall cluster utilization by giving away
otherwise reserved resources when they’re not used.

• You require jobs within a pool to make equal progress rather than running in FIFO
order.

Configuration

Configuring the Fair Scheduler is broken up into two parts: global settings that are
made in mapred-site.xml, and configuring any special pool settings that is done in a
separate file. As described earlier, the scheduler class name—which in the case of the
Fair Scheduler, is org.apache.hadoop.mapred.FairScheduler—must be specified in the
mapred.jobtracker.taskScheduler parameter in mapred-site.xml. The following Fair
Scheduler settings are supported in mapred-site.xml:

mapred.fairscheduler.allocation.file (required)
Defines the absolute path to the pool allocation file. This file must exist when the
jobtracker starts and must be a valid XML file. The allocation file is polled for
changes every 10 seconds and if it has changed, it is reloaded and the pool config-
urations are updated dynamically. See the following for more information on con-
figuring pools in the allocation file.

Default value: none. Example: /etc/hadoop/conf/allocations.xml

mapred.fairscheduler.poolnameproperty
The mapred.fairscheduler.poolnameproperty property specifies the name of the
job configuration property from which to take the name of the pool for assignment.
That’s a mouthful. Take the default as an example: mapred.fairscheduler.poolna
meproperty is set to user.name. This causes the scheduler to use the value of the
user.name parameter as the pool to which a job is assigned. If the user user.name is
set to jane, this now becomes the pool that is used. Instead, if we set mapred.fair
scheduler.poolnameproperty to group.name, the user’s primary OS group (on Linux,
at least) would be used as the pool name. If you wish to use the jobtracker’s access
control lists to control who may submit jobs to which queues and by extension,
which pools, you must set mapred.fairscheduler.poolnameproperty to
mapred.job.queue.name. Users submitting jobs may then specify the proper value
of mapred.job.queue.name, which is then checked against the ACLs and submitted
to a pool of the same name.

Default value: user.name

180 | Chapter 7: Resource Management

www.it-ebooks.info

http://www.it-ebooks.info/

mapred.fairscheduler.preemption
Globally enables (true) or disables (false) preemption in the Fair Scheduler. Task
preemption is disabled by default. If you have pools that must operate on an SLA,
you should configure their minimum shares appropriately, enable this parameter,
and set an appropriate minimum share or fair share timeout.

Default value: false

mapred.fairscheduler.allow.undeclared.pools
Normally, the Fair Scheduler automatically creates new pools if a job is submitted
to them. To disable this behavior and force only pools defined in the allocations
file to be considered valid, set this parameter to false.

Default value: true

mapred.fairscheduler.sizebasedweight
A lesser used but interesting feature of the Fair Scheduler is the ability to dynam-
ically set the weight of a pool based on the size of its demand. Enabling this feature
dynamically allocates more slots to pools that have a large number of queued tasks.
In other words, as a pool becomes backlogged, the scheduler gives it more resources
to help it catch up. Remember that weight affects only fair share allocation so this
adjusts only allocation of resources after minimum shares have been satisfied
(which also means it cannot impact SLAs).

Default value: false

mapred.fairscheduler.assignmultiple
Globally enables or disables multiple task assignment during a single tasktracker
heartbeat, as described earlier. Clusters with short, interactive jobs will see a no-
ticeable wall clock speed increase from job submission to completion time when
enabling this.

Default value: true

mapred.fairscheduler.assignmultiple.maps
When multiple assignment is enabled, this parameter dictates how many map tasks
should be assigned in a single heartbeat. Setting this value to -1 (negative one)
indicates an unlimited number of map tasks may be assigned.

Default value: -1

mapred.fairscheduler.assignmultiple.reduces
This parameter serves exactly the same function as mapred.fairscheduler.assign
multiple.maps, but for reduce tasks.

Default value: -1

mapred.fairscheduler.weightadjuster
It is possible to write a plug-in for the Fair Scheduler that determines how the
weight of pools is adjusted, dynamically. While describing the development of such
a plug-in is out of scope for this book, setting this parameter to the class name is
how the plug-in is configured.

MapReduce Schedulers | 181

www.it-ebooks.info

http://www.it-ebooks.info/

Default value: none.

Example value: com.mycompany.hadoop.mapred.MyWeightAdjuster

mapred.fairscheduler.eventlog.enabled
The Fair Scheduler supports a specialized event log that traces all actions from new
job submission, to task assignment, to preemption. Rarely used, enabling this pa-
rameter can be helpful in understanding the behavior of the scheduler.

Default value: false

mapred.fairscheduler.preemption.only.log
Rather than actually preempting tasks according to the pool configuration, it’s
possible to just log what would have happened to the scheduler’s event log (which
must be separately enabled). Setting this value to true will do this.

Default value: false

With the global settings in place, the remainder of the configuration is done in the
allocations file. This is the same file specified by the mapred.fairscheduler.alloca
tion.file parameter in mapred-site.xml. It’s generally named allocations.xml or fair-
scheduler.xml and located in the Hadoop configuration directory, but that’s not a hard
requirement (although that’s what we’ll use here). Based on the file extension, it’s
probably obvious that this is an XML file, although the format is different than the
normal Hadoop configuration files. (See Example 7-6.)

Example 7-6. A minimal Fair Scheduler allocation file

<?xml version="1.0"?>

<!-- The world's least exciting Fair Scheduler configuration file. -->
<allocations>
</allocations>

The absolute minimum the allocations file must contain is the standard XML stanza
followed by the allocations document tag. Starting the jobtracker with this configu-
ration (and the proper mapred.fairscheduler.allocation.file value) will enable the
Fair Scheduler with its default behavior, which allows pools to be dynamically created
with no special minimum shares or weights defined. Changes made to the allocations
file are dynamically reloaded by the jobtracker, as described earlier.

The following tags are supported within the document-level allocations tag.

pool
The pool element defines and configures a pool. It supports a number of child
elements that define the minimum map and reduce shares, the minimum share
preemption timeout, and other properties. See Tables 7-6 and 7-7.

182 | Chapter 7: Resource Management

www.it-ebooks.info

http://www.it-ebooks.info/

Table 7-6. Attributes

Name Description Required

name Defines the pool name. Yes

Table 7-7. Child elements

Name Description Required

minMaps Minimum map share. (Default: 0) No

minReduces Minimum reduce share. (Default: 0) No

maxMaps Maximum allowed concurrent map
tasks. (Default: unlimited)

No

maxReduces Maximum allowed concurrent reduce
tasks. (Default: unlimited)

No

maxRunningJobs Total maximum running jobs permit-
ted concurrently. (Default: unlimited)

No

weight The pool weight used during fair share
allocation. (Default: 1)

No

minSharePreemptionTimeout Time, in seconds, before preempting
tasks when operating under mini-
mum share. (Default: unlimited)

No

schedulingMode Scheduling mode used within a pool,
either FAIR (default) or FIFO.

No

user
In addition to defining certain resource limits per pool, it’s possible to define such
limits on a per-user basis as well. This is helpful when there’s a requirement to
assign jobs to pools by something other than username, but certain users should
still receive special treatment. While the sole child element of maxRunningJobs isn’t
necessarily required, omitting it obviates the need to specify the user element at
all. (See Tables 7-8 and 7-9.)

Table 7-8. Attributes

Name Description Required

name The user’s name. Yes

Table 7-9. Child Elements

Name Description Required

maxRunningJobs Total maximum running jobs permit-
ted concurrently. (Default: unlimited)

No

MapReduce Schedulers | 183

www.it-ebooks.info

http://www.it-ebooks.info/

userMaxJobsDefault
This element defines the default maximum number of concurrent jobs for all users
and may be overridden by user elements.

Default: 0 (unlimited)

poolMaxJobsDefault
This elements defines the default maximum number of concurrent jobs for all
pools. Specifying a maxRunningJobs element within a pool element overrides this
value for the pool.

fairSharePreemptionTimeout
The global fair share preemption timeout defines (in seconds) how long a pool
operates under 50% of its fair share utilization before preemption occurs. This
element has no meaning unless preemption is globally enabled in the mapred-
site.xml file.

Default: Java’s Long.MAX_VALUE.

defaultMinSharePreemptionTimeout
The default minimum share preemption timeout defines (in seconds) how long a
pool operates under its minimum share before preemption occurs. This element
has no meaning unless preemption is globally enabled in the mapred-site.xml file.
Pools may override this value using the minSharePreemptionTimeout child element
of the pool element.

Default: Java’s Long.MAX_VALUE.

defaultPoolSchedulingMode
By default, jobs within a pool are scheduled using the same algorithm as fair share
allocation between pools. It is possible to change the default for all pools to be
strictly FIFO ordered, by setting this element to FIFO. The only other option is
FAIR which is the default. Pools may override this value using the schedulingMode
child element of the pool element.

All of this can be a lot to take in. The following are a few example allocation file ex-
amples to get you started. The first example (Example 7-7) is a configuration file that
defines a pool named production-etl with minimum shares of 40 and 20 map and
reduce slots, respectively, and a research pool with a weight of 2 but no minimum
shares. Minimum share preemption is configured to occur after five minutes and fair
share preemption never occurs.

Example 7-7. Fair Scheduler pool configuration—production-etl, research

<?xml version="1.0"?>

<allocations>

 <defaultMinSharePreemptionTimeout>300</defaultMinSharePreemptionTimeout>

 <pool name="production-etl">
 <minMaps>40</minMaps>

184 | Chapter 7: Resource Management

www.it-ebooks.info

http://www.it-ebooks.info/

 <minReduces>20</minReduces>
 </pool>

 <pool name="research">
 <weight>2</weight>
 </pool>

</allocations>

Next, Example 7-8 shows the same configuration, but now user james is limited to only
three concurrent jobs, no matter what pool he uses.

Example 7-8. Fair Scheduler pool configuration—production-etl, research, user limits

<?xml version="1.0"?>

<allocations>

 <defaultMinSharePreemptionTimeout>300</defaultMinSharePreemptionTimeout>

 <user name="james">
 <maxRunningJobs>3</maxRunningJobs>
 </user>

 <pool name="production-etl">
 <minMaps>40</minMaps>
 <minReduces>20</minReduces>
 </pool>

 <pool name="research">
 <weight>2</weight>
 </pool>

</allocations>

The Capacity Scheduler
Finally, the Capacity Scheduler (sometimes called the cap scheduler for short) is another
popular alternative to the default FIFO scheduler. Like the Fair Scheduler, the Capacity
Scheduler was created to enable multiple groups to share a single large cluster, while
maintaining certain guarantees on resource allocation. Originally developed by the
Hadoop team at Yahoo!, the Capacity Scheduler is battle tested in some of the largest
Hadoop clusters known.

The primary differences between the Fair and Capacity schedulers have to do with the
philosophy behind the task scheduling algorithm. Additionally, there are some feature
differences that would cause someone to choose one over the other, which are high-
lighted. To start, the Capacity Scheduler is a simpler and in some ways, a more deter-
ministic scheduler than the Fair Scheduler. An administrator configures one or more
queues, each with a capacity—a predetermined fraction of the total cluster slot capacity.
This is akin to the Fair Scheduler’s minimum share definition, however it is reserved

MapReduce Schedulers | 185

www.it-ebooks.info

http://www.it-ebooks.info/

for the queue in question and is not given away in the absence of demand. During the
tasktracker heartbeat, slots are given to queues (analogous to the Fair Scheduler pools,
in this context), with the most starved queues receive slots first. Queue starvation is
measured by dividing the number of running tasks in the queue by the queue’s capacity
or in other words, its percentage used. Any additional slots beyond the sum of the queue
capacities defined may be freely assigned to any queue, as needed, by the scheduler.

Within a queue, jobs for the same user are FIFO ordered. Unfortunately, this means
it’s possible for two jobs submitted by the same user within a queue to block another,
although capacity is still distributed appropriate across queues. Similar to the FIFO
scheduler, however, jobs can be prioritized within a queue. This limitation may or may
not be an issue for you, depending on your use case and environment. Administrators
can optionally disable intra-queue prioritization of jobs as well.

One of the more significant features of the Capacity Scheduler is the ability to control
allocation based on physical machine resources. The previously covered schedulers
work exclusively in terms of slots, but the Capacity Scheduler additionally understands
scheduling tasks based on (user defined) memory consumption of a job’s tasks as well.
When properly configured, the scheduler uses information collected by the tasktracker
to aid in scheduling decisions. An administrator may specify a default virtual and phys-
ical memory limit on tasks that users may optionally override upon job submission.
The scheduler then uses this information to decide on which tasktracker to place the
tasks, taking into account any other tasks currently executing on the host. Checks exist
to ensure these so-called high memory jobs are not starved for resources in the face of
jobs without such a requirement.

JVM garbage collection pauses can become an issue in high activity clusters. This tends
to be a side effect of how the jobtracker initializes jobs submitted to the cluster and
how it handles memory. Tasks are represented within the jobtracker as Java objects
and placed in a list-like data structure. When many large jobs are submitted in rapid
succession, the amount of memory required to create and manage these objects and
their associated state can add up considerably. Task objects are constantly being created
during submission, modified during execution, and destroyed when they age out of the
system. Ultimately, this leads to object churn and manifests as long pauses during
garbage collection. Some of this can be mitigated by fancy garbage collector tuning,
however, a better answer is to simply manage memory more effectively. The Capacity
Scheduler supports a feature where job initialization is performed lazily, which can
reduce the required memory footprint of the jobtracker. This feature allows an admin-
istrator to specify a maximum number of jobs to initialize, per user, per queue. Of
course, a running job must have all of its task objects in memory, so these limits apply
to those that aren’t yet ready to run.

Choose the Capacity Scheduler over the Fair Scheduler if:

• You know a lot about your cluster workloads and utilization and simply want to
enforce resource allocation.

186 | Chapter 7: Resource Management

www.it-ebooks.info

http://www.it-ebooks.info/

• You have very little fluctuation within queue utilization. The Capacity Scheduler’s
more rigid resource allocation makes sense when all queues are at capacity almost
all the time.

• You have high variance in the memory requirements of jobs and you need the
Capacity Scheduler’s memory-based scheduling support.

• You demand scheduler determinism.

Configuration

Like the other schedulers, the first step in configuring the Capacity Scheduler is to set
the value of mapred.jobtracker.taskScheduler to its class name,
org.apache.hadoop.mapred.CapacityTaskScheduler. Just as with the Fair Scheduler, the
Capacity Scheduler uses a separate file (unsurprisingly) called capacity-scheduler.xml,
which also lives in the Hadoop configuration directory. In this file, the various queue
capacities and other settings are defined, however it is still necessary to specify the
queue names in the mapred-site.xml file in the mapred.queue.names parameter. The
capacity-scheduler.xml file follows the same key value format of the three standard
Hadoop XML configuration files.

Queue settings are defined using the same pseudo-hierarchical naming convention as
other Hadoop parameters. Here is a list of the supported Capacity Scheduler configu-
ration parameters.

On deprecated memory related parameters
Some of parameters to control memory-aware scheduling in the Apache
Hadoop and CDH documentation are actually deprecated in the code.
Rather than cover the deprecated parameters (which were a little con-
fusing), the newer, simpler parameters are shown in the following list.
You may find that these parameters are not covered in the published
documentation for certain releases, but they do work and should be
used instead. To reduce confusion, explicit version numbers have been
listed for these parameters.

mapred.capacity-scheduler.queue.queue-name.capacity
Sets the capacity for the queue named queue-name. The defined queue-name must
match one of the queues named in the mapred.queue.names parameter in mapred-
site.xml. The value of this parameter is an integer and specifies the percentage of
the total available cluster slots to be reserved for tasks in this queue. This applies
to both map and reduce slots. For example, a value of 82 would reserve 82% of
map and reduce slots for the named queue. The sum of the capacities of all queues
must be less than or equal to 100. If there are any queues without a configured
capacity, each receives an even share of any unallocated capacity.

Default value: none. Example value: 30.

MapReduce Schedulers | 187

www.it-ebooks.info

http://www.it-ebooks.info/

mapred.capacity-scheduler.queue.queue-name.maximum-capacity (AH 1.x+,
CDH3u0+)

Places an upper limit on how much of the cluster, beyond the queue’s defined
capacity, a queue is permitted to use (defined as a percentage of capacity). This
parameter exists to prevent a queue with long running tasks from grabbing and
holding excess capacity that, when needed by another queue that’s starved for
capacity, can not be returned quickly. It exists to mitigate the lack of preemption
in the Capacity Scheduler. A simple example use of this feature would be a queue
with a capacity of 30 and a maximum capacity of 80. This value must be greater
than or equal to the queue’s capacity. The default value of -1 (negative one) indi-
cates that a queue has no limit on the maximum capacity it can use.

Default value: -1 (no maximum capacity limit)

mapred.capacity-scheduler.queue.queue-name.supports-priority
Enabling this option (a value of true) instructs the scheduler to respect the priority
with which jobs are submitted to queue-name.

Default value: false

mapred.capacity-scheduler.queue.queue-name.minimum-user-limit-percent
The maximum percentage (specified as an integer from 0 to 100) of slots within a
queue that a user will receive when there is contention for them. For example, a
value of 25 means no user will receive more than 25% of the queue resources if
there are multiple users running jobs within a queue. When there isn’t contention,
all queue resources are divided evenly amongst users. In other words, if the queue
capacity was 50% of 200 total cluster slots (yielding 100 slots for this queue) and
this parameter was 25, a single user would receive all 100 slots, two users would
receive 50 slots, three users would receive 33 slots, and beyond that, users would
never receive more than 25 slots. A value of 100 means there is no per-user limit.

Default value: 100

mapred.capacity-scheduler.queue.queue-name.user-limit-factor (AH 1.x+,
CDH3u0+)

Related to the minimum user limit percentage, the user limit factor defines a mul-
tiplier of the queue’s capacity to which a user is limited regardless of excess cluster
capacity. For instance, the value of 2 means no user will ever receive more than 2×
the queue’s capacity. Given a queue capacity of 20% of a 100 slot cluster, a single
user would never occupy more than 40 slots (20% of 100 is 20 slots, times a mul-
tiplier of 2 is 40 slots). The default value of 1 limits a single user to the capacity of
the queue.

Default value: 1

mapred.capacity-scheduler.queue.queue-name.maximum-initialized-jobs-per-user
The number of jobs per user that should be eagerly initialized within a queue. If
this property is not defined, the value of mapred.capacity-scheduler.default-max
imum-initialized-jobs-per-user is used.

188 | Chapter 7: Resource Management

www.it-ebooks.info

http://www.it-ebooks.info/

Default value: value of mapred.capacity-scheduler.default-maximum-initialized-
jobs-per-user.

mapred.capacity-scheduler.queue.queue-name.maximum-initialized-active-tasks
(AH 1.x+, CDH3u0+)

The maximum number of tasks that can be initialized within a given queue. When
this value is exceeded, tasks are queued on disk rather than in memory.

Default value: value of mapred.capacity-scheduler.default-maximum-active-
tasks-per-queue

mapred.capacity-scheduler.queue.queue-name.maximum-initialized-active-tasks-
per-user (AH 1.x+, CDH3u0+)

The maximum number of tasks that can be initialized within a given queue for a
given user. When this value is exceeded, tasks are queued on disk rather than in
memory.

Default value: value of mapred.capacity-scheduler.default-maximum-active-
tasks-per-user

mapred.capacity-scheduler.queue.queue-name.init-accept-jobs-factor (AH 1.x+,
CDH3u0+)

Allows for queue level overrides of the related mapred.capacity-schedu
ler.default-init-accept-jobs-factor. See later entries for a full explanation of
this parameter.

Default value: value of mapred.capacity-scheduler.default-init-accept-jobs-
factor

mapred.capacity-scheduler.default-maximum-active-tasks-per-queue (AH 1.x+,
CDH3u0+)

The scheduler wide default number of maximum initialized active tasks permitted
in memory per queue. When there are more tasks than this value, they are queued
to disk. This value can be overridden by individual queues by using
mapred.capacity-scheduler.queue.queue-name.maximum-initialized-active-
tasks.

Default value: 200000

mapred.capacity-scheduler.default-maximum-active-tasks-per-user (AH 1.x+,
CDH3u0+)

The scheduler wide default number of maximum initialized active tasks permitted
in memory, per user. When there are more tasks than this value, they are queued
to disk. This value can be overridden by individual queues by using
mapred.capacity-scheduler.queue.queue-name.maximum-initialized-active-
tasks-per-user.

Default value: 100000

mapred.capacity-scheduler.default-init-accept-jobs-factor (AH 1.x+, CDH3u0+)
The Capacity Scheduler includes some support for protecting itself against inad-
vertent denial of service attacks. One measure is to stop accepting new job sub-

MapReduce Schedulers | 189

www.it-ebooks.info

http://www.it-ebooks.info/

missions to queues after the number of queued and running jobs exceeds a
threshold.

To ensure new job acceptance is performed with some degree of fairness across
queues, the scheduler makes some assumptions. One of these is that the queue
capacity (which, remember, is expressed as a percentage of cluster slot capacity),
while normally applied to task slots, can also be used as the percentage of resources
to use for new job acceptance. In other words, if a queue is allocated 45% of all
cluster slots, the scheduler will allow it 45% of the maximum system job count
before it begins rejecting new jobs. This parameter acts as a multiplier to that job
count. Continuing the example, a queue with 45% capacity, the default maximum
system job count of 5,000, and this value set to 20, would accept up to 45,000 new
jobs before rejecting additional submissions (45% of 5,000 is 2,250, times 20 equals
45,000). Keep in mind that this value is the default for queues that do not explicitly
specify a value for mapred.capacity-scheduler.queue.queue-name.init-accept-
jobs-factor. Unless a queue’s capacity is unusually small or you reduce max system
jobs, there probably isn’t a compelling reason to modify this value. The notable
exception is the case where cluster resources—both jobtracker and total cluster
slots—are in almost absurd demand, in which case this can act like throttling con-
nections on an HTTP server.

Default value: 10

mapred.capacity-scheduler.default-supports-priority (AH 1.x+, CDH3u0+)
Sets the default value for queues that do not explicitly set mapred.capacity-sched
uler.queue.queue-name.supports-priority. Enabling this parameter causes the
scheduler to take job priorities into account when scheduling, otherwise they’re
ignored.

Default value: false

mapred.capacity-scheduler.init-poll-interval
Internally, the Capacity Scheduler polls the queues for new jobs to initialize. It’s
possible to control the frequency (defined in milliseconds) at which this polling
occurs. Polling too often results in wasted CPU resources, whereas polling too
infrequently means that jobs that should be scheduled can’t because they’re not
yet ready. This is an advanced parameter that most users shouldn’t need to modify.

Default value: 5000 (5 seconds)

mapred.capacity-scheduler.init-worker-threads
Job initialization is handled by a group of worker threads within the capacity
scheduler and is configured using this parameter. When the number of worker
threads is fewer than the number of job queues, threads initialize jobs in a round-
robin fashion. If this parameter’s value is greater than or equal to the number of
queues, each queue has a dedicated thread to perform job initialization. There are
never more initialization worker threads spawned than job queues. This is an ad-
vanced parameter that most users shouldn’t need to modify.

190 | Chapter 7: Resource Management

www.it-ebooks.info

http://www.it-ebooks.info/

Default value: 5

mapred.capacity-scheduler.maximum-system-jobs (AH 1.x+, CDH3u0+)
Defines the maximum jobs that can be initialized at any one time within the
scheduler.

Default value: 5000

mapred.cluster.map.memory.mb (AH 0.20.x+, CDH3u0+) (set in mapred-site.xml)
Specifies the size of a map slot in megabytes. This is used by the scheduler to know
how much (virtual) memory the administrator expects a map slot to support. When
a user submits a job that asks for more memory per map task than this, it is simply
counted as occupying more than one slot. For example, if this parameter were set
to 2048 (2GB) and a user submitting a job specifies that their map tasks need 4096
(4GB), the scheduler will count each map task as two slots and schedule it accord-
ingly. This parameter must be set for memory-aware scheduling to function.

Default value: -1 (meaning memory-aware scheduling is disabled)

mapred.cluster.reduce.memory.mb (AH 0.20.x+, CDH3u0+) (set in mapred-site.xml)
This parameter serves exactly the same purpose as mapred.cluster.map.mem
ory.mb above, but for reduce slots. This parameter must be set for memory-aware
scheduling to function.

Default value: -1 (meaning memory-aware scheduling is disabled)

mapred.cluster.max.map.memory.mb (AH 0.20.x+, CDH3u0+) (set in mapred-site.xml)
Related to mapred.cluster.map.memory.mb (note the subtle difference in the names),
this parameter places a limit on the amount of memory a user may request for map
tasks when submitting a job. Setting this parameter to 8192 (8GB), for example,
would prevent a user from requesting more than 8GB per map task and as a more
tangible result, more than 4 map slots per map task (assuming mapred.clus
ter.map.memory.mb was set to 2048). This parameter must be set for memory-aware
scheduling to function.

Default value: -1 (meaning memory-aware scheduling is disabled)

mapred.cluster.max.reduce.memory.mb (AH 0.20.x+, CDH3u0+) (set in mapred-
site.xml)

The reduce task counterpart to mapred.cluster.max.map.memory.mb, this parameter
affects the limit on the maximum amount of memory a user may request for reduce
tasks. This parameter must be set for memory-aware scheduling to function.

Default value: -1 (meaning memory-aware scheduling is disabled)

Let’s look at a simple Capacity Scheduler configuration file in Example 7-9. We’ll as-
sume we’re working with a cluster of 80 map slots and 30 reduce slots, and the same
pool names from the Fair Scheduler example.

MapReduce Schedulers | 191

www.it-ebooks.info

http://www.it-ebooks.info/

Example 7-9. Capacity Scheduler queue configuration—production-etl, research

<?xml version="1.0"?>

<configuration>

 <!--
 50% of the cluster capacity is given to the production-etl queue.
 -->
 <property>
 <name>mapred.capacity-scheduler.queue.production-etl.capacity</name>
 <value>50</value>
 </property>

 <!--
 Allow production jobs to be prioritized.
 -->
 <property>
 <name>mapred.capacity-scheduler.queue.production-etl.supports-priority</name>
 <value>true</value>
 </property>

 <!--
 Don't allow the research group to occupy more than 30% of the cluster.
 -->
 <property>
 <name>mapred.capacity-scheduler.queue.research.maximum-capacity</name>
 <value>30</value>
 </property>

 <!--
 No single user is permitted to take up more than 50% of the research
 queue capacity.
 -->
 <property>
 <name>mapred.capacity-scheduler.queue.research.minimum-user-limit-percent</name>
 <value>50</value>
 </property>

 <!-- Scheduler-wide defaults. -->

 <!--
 Permit up to 10K jobs.
 -->
 <property>
 <name>mapred.capacity-scheduler.maximum-system-jobs</name>
 <value>10000</value>
 </property>

</configuration>

192 | Chapter 7: Resource Management

www.it-ebooks.info

http://www.it-ebooks.info/

The Future
Today, it’s possible to build large shared Hadoop clusters and support multiple groups
of users while maintaining service level agreements in both storage and processing
capacity. It is, however, necessary to have detailed knowledge of how various workloads
perform with respect to system resources and to encapsulate that behavior in how task
slots are provisioned. Ideally, this wouldn’t be the case. Research has been well under
way for some time now to improve the state of the art with respect to both how resources
are tracked and how they’re allocated to cluster users. The problem is that, while it’s
trivial (at least theoretically) to track host level resource consumption, tracking this
information at the process granularity is a little bit trickier. Systems like Hadoop have
additional layers of complexity introduced as a result of being multiuser systems, but
also because they accept arbitrary code. In the world of the relational database, where
it’s possible to build dataset statistics and where the environment where one interacts
with the data is so highly structured, it is simpler (although still not necessarily as simple
as one might expect) to measure resources consumed during a given operation. In fact,
using information about the data, most relational databases have a reasonable ability
to anticipate resource consumption before an operation begins (assuming it’s up to
date). Hadoop isn’t there yet.

The power of Hadoop lies in its ability to take in, process, and store massive amounts
of data in various formats. This comes with the baggage of not necessarily having the
luxury of a centralized mechanism to compute, store, and reference this type of infor-
mation. Of course, all the tools to do so exist and are available, but it’s up to the user
to decide when and to what extent the cost of building and maintaining this information
is important. In other words, Hadoop is a framework for those building custom data
processing systems more than a shrink-wrapped, turn key, data management system.
This isn’t easy and many aren’t in the business of building data management systems,
and so there has to be a middle ground.

If you believe the hype (and you probably do, either voluntarily or at the demand of
those around you, if you’re reading this), Hadoop is fast becoming a larger platform
for different forms of data processing. YARN is an indication of this. Sure, the YARN
impetus was to scale the function of the jobtracker and enable the coexistence of dif-
ferent versions of the MapReduce libraries on the same hardware, but it also created
the infrastructure necessary to allow those who are in the business of implementing
data processing systems (such as the larger Hadoop community) to build new frame-
works as applications on a meta-platform, a resource management framework in which
one can build data processing systems with resource management features. Not only
can we allocate resources within MapReduce, but consider multiple instances of Map-
Reduce running in containers within YARN, sharing a single instance of HDFS. That
is the future of Hadoop and we’re seeing the beginning of it today.

Researchers, both in academia and the industry, are working on new ways to manage
host resources in a more granular way. Today it is possible to make scheduling decisions

MapReduce Schedulers | 193

www.it-ebooks.info

http://www.it-ebooks.info/

based on memory consumption, but with Linux Control Groups (or more commonly,
just cgroups) and better reporting of host resources to the scheduler, it will be possible
make better decisions about task placement. Using a system like cgroups also greatly
increases system stability as processes can be isolated from one another and resource
limit violators killed quickly.

194 | Chapter 7: Resource Management

www.it-ebooks.info

http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.it-ebooks.info/

CHAPTER 8

Cluster Maintenance

Hadoop clusters require a moderate amount of day-to-day care and feeding in order to
remain healthy and in optimal working condition. Maintenance tasks are usually per-
formed in response to events: expanding the cluster, dealing with failures or errant jobs,
managing logs, or upgrading software in a production environment. This chapter is
written in “run book form,” with common tasks called out and simple processes for
dealing with those situations. It’s not meant to supplant a complete understanding of
the system, and as always, the normal caveats apply when dealing with systems that
store data or serve critical functions.

Managing Hadoop Processes
It’s not at all unusual to need to start, stop, or restart Hadoop daemons because of
configuration changes or as part of a larger process. Depending on the selected de-
ployment model and distribution, this can be as simple as using standard service init
scripts or by way of specialized scripts for Hadoop. Some administrators may use con-
figuration management systems such as Puppet and Chef to manage processes.

Starting and Stopping Processes with Init Scripts
The most common reason administrators restart Hadoop processes is to enact config-
uration changes. Other common reasons are to upgrade Hadoop, add or remove worker
nodes, or react to incidents. The effect of starting or stopping a process is entirely
dependent upon the process in question. Starting a namenode will bring it into service
after it loads the fsimage, replays the transaction log, sees some percentage of blocks
(minimally replicated) from the datanodes, and is stable for some additional amount
of time, as defined by the dfs.safemode.extension parameter. The percentage of blocks
required by the namenode to start is controlled by the dfs.safemode.threshold.pct
parameter, but is roughly 100%.1 The datanode daemon will connect to its configured

1. Technically, it’s 0.999, or 99.9%, for internal implementation reasons.

195

www.it-ebooks.info

http://www.it-ebooks.info/

namenode upon start and immediately join the cluster. Once the namenode has regis-
tered the datanode, subsequent read and write operations may begin using it right away.

Stopping or restarting a namenode will render HDFS unavailable unless operating in a
highly available pair. Datanodes can be safely stopped without interrupting HDFS ser-
vice, although replication of their block data will occur, which creates load on the
network. Stopping a tasktracker results in any currently executing child tasks being
killed. These tasks will be retried later on another tasktracker. Any affected jobs will
appear to slow down but will not fail unless the tasks in question were the final attempt
to be made prior to failing the job.

1. Become user root (or use sudo).

2. Execute /etc/init.d/script operation where script is one of the daemon init
scripts and operation is one of start, stop, or restart.

3. Confirm that the process started or stopped by checking its log files or looking for
the process in the output of ps -ef | grep process.

The CDH init scripts are distributed within their own packages and must be installed
separately, whereas Apache Hadoop is a single package that contains everything. CDH
users: see “CDH” on page 80 for more information on installing init scripts.

Starting and Stopping Processes Manually
It is occasionally handy to be able to manually start a Hadoop daemon in the foreground
as often happens when an administrator needs to debug odd behavior on a machine or
when rapidly experimenting with different configuration parameters. Starting a process
manually and running it in the foreground doesn’t change its behavior, so all conse-
quences of starting or stopping a process using the init scripts apply:

1. Become the user the process needs to run as (or use sudo -u username when exe-
cuting commands).

2. Execute hadoop process to start the process, where process is one of the Hadoop
daemons (see the help output of hadoop for a list). To stop the process, press
Control+C or kill process-id from another terminal.

HDFS Maintenance Tasks

Adding a Datanode
Adding a datanode is done in response to a need for additional cluster capacity, usually
in the case of additional storage requirements, although sometimes it is to increase
aggregate IO bandwidth or to reduce the impact of losing a single machine. The addi-
tion of new datanodes to an existing HDFS cluster is an online or hot operation. For
those that make use of the HDFS host include functionality, the IP address of the new

196 | Chapter 8: Cluster Maintenance

www.it-ebooks.info

http://www.it-ebooks.info/

host must be added to the include file, but the list of hosts can be dynamically refreshed
without restarting the namenode:

1. Add the IP address of the datanode to the file specified by the dfs.hosts parameter.
Each entry should be separated by a newline character.

2. Execute the command hadoop dfsadmin -refreshNodes as the HDFS superuser or
a user with equivalent privileges.

3. If using rack awareness, update any rack information necessary for the new host.

4. Start the datanode process.

5. Check the namenode web UI or the output of hadoop dfsadmin -report to confirm
that the new host is connected.

Steps 1 and 2 are required only if you are using the HDFS host include functionality.

Decommissioning a Datanode
A datanode may be decommissioned to remove it from the cluster gracefully while
maintaining the replication factor of all blocks stored on the machine. The process can
be lengthy, depending on the amount of data on the host, the activity of the cluster,
and the speed of the network. Due to the length of the decommissioning process, it is
not common for this to be done prior to brief host outages such as those caused by OS
reboots or rolling restarts due to configuration changes. If it is imperative that all copies
of a block data remain completely available, use the decommissioning function.

The decommissioning process relies on the HDFS host include and ex-
clude files. If you are not using these files, it is not possible to gracefully
decommission a datanode.

Decommissioning a datanode results in increased network activity while HDFS creates
new replicas of the block data on other datanodes in the cluster. When the process
begins, the namenode UI will indicate that the decommissioning of one or more nodes
is currently in progress. Upon completion, the status changes to decommissioned. At
that point, the datanode process can be safely stopped:

1. Add the IP address of the datanode to the file specified by the dfs.hosts.exclude
parameter. Each entry should be separated by a newline character.

2. Execute the command hadoop dfsadmin -refreshNodes as the HDFS super user or
a user with equivalent privileges.

3. Monitor the namenode web UI and confirm the decommission process is in pro-
gress. It can take a few seconds to update.

HDFS Maintenance Tasks | 197

www.it-ebooks.info

http://www.it-ebooks.info/

4. Go get coffee or, for datanodes with a lot of data, go home for the night. Decom-
missioning can take hours or even days! When the process has completed, the
namenode UI will list the datanode as decommissioned.

5. Stop the datanode process.

6. If you do not plan to reintroduce the machine to the cluster, remove it from the
HDFS include and exclude files as well as any rack topology database.

7. Execute the command hadoop dfsadmin -refreshNodes to have the namenode pick
up the removal.

Checking Filesystem Integrity with fsck
There are a few pathological conditions that can occur in HDFS. A file in HDFS can
become corrupt if all copies of one or more blocks are unavailable, which would leave
a hole in the file of up to the block size of the file, and any attempt to read a file in this
state would result in a failure in the form of an exception. For this problem to occur,
all copies of a block must become unavailable fast enough for the system to not have
enough time to detect the failure and create a new replica of the data. Despite being
rare, catastrophic failures like this can happen and when they do, administrators need
a tool to detect the problem and help them find the missing blocks.

By default, the fsck tool generates a summary report that lists the overall health of the
filesystem. HDFS is considered healthy if—and only if—all files have a minimum num-
ber of replicas available. A dot is printed for each file examined; the summary includes
information about the number of total blocks, the average replication factor, available
capacity, the number of missing blocks, and other important metrics:

[esammer@hadoop01 ~]$ sudo -u hdfs hadoop fsck /
FSCK started by hdfs (auth:SIMPLE) from /10.1.1.132 for path / at ↵
 Fri May 25 10:48:52 PDT 2012
...
...
...Status: HEALTHY
 Total size: 9113209169518 B
 Total dirs: 9206
 Total files: 14649 (Files currently being written: 10)
 Total blocks (validated): 87640 (avg. block size 103984586 B) ↵
 (Total open file blocks (not validated): 10)
 Minimally replicated blocks: 87640 (100.0 %)
 Over-replicated blocks: 0 (0.0 %)
 Under-replicated blocks: 0 (0.0 %)
 Mis-replicated blocks: 0 (0.0 %)
 Default replication factor: 3
 Average block replication: 2.2504907
 Corrupt blocks: 0
 Missing replicas: 0 (0.0 %)
 Number of data-nodes: 10
 Number of racks: 1
FSCK ended at Fri May 25 10:47:32 PDT 2012 in 960 milliseconds

198 | Chapter 8: Cluster Maintenance

www.it-ebooks.info

http://www.it-ebooks.info/

The filesystem under path '/' is HEALTHY

Hadoop’s fsck is unlike Linux fsck in that it isn’t destructive by default. Rather than
running on a device, it also differs by checking a path (note the slash at the end of the
previous command line). As you might expect, it is also possible to check only subtrees
of the filesystem by providing a path other than the root.

A number of additional command-line options are supported by fsck:

[esammer@hadoop01 ~]$ sudo -u hdfs hadoop fsck
Usage: DFSck <path> [-move | -delete | -openforwrite] [-files [-blocks ↵
 [-locations | -racks]]]
 <path> start checking from this path
 -move move corrupted files to /lost+found
 -delete delete corrupted files
 -files print out files being checked
 -openforwrite print out files opened for write
 -blocks print out block report
 -locations print out locations for every block
 -racks print out network topology for data-node locations
 By default fsck ignores files opened for write, use -openforwrite to ↵
 report such files. They are usually tagged CORRUPT or HEALTHY ↵
 depending on their block allocation status
...

The -files, -blocks, and -locations options can be used to figure out exactly which
files are affected by missing blocks, as well as which blocks fall on which datanodes.
In the event of a failure, it’s important to be able to read the detailed fsck output:

[esammer@hadoop01 ~]$ sudo -u hdfs hadoop fsck / -files -blocks -locations
FSCK started by hdfs (auth:SIMPLE) from /10.1.1.132 for path / at ↵
 Fri May 25 17:20:33 PDT 2012
/ <dir>
...
/hbase/usertable/a8a0829c1661099e80f4d619a4a8b77d <dir>
/hbase/usertable/a8a0829c1661099e80f4d619a4a8b77d/.regioninfo ↵
 866 bytes, 1 block(s): OK
0. blk_3620806743122792301_938094 len=866 repl=3 ↵
 [10.1.1.140:1004, 10.1.1.135:1004, 10.1.1.137:1004]

/hbase/usertable/a8a0829c1661099e80f4d619a4a8b77d/.tmp <dir>
/hbase/usertable/a8a0829c1661099e80f4d619a4a8b77d/value <dir>
/hbase/usertable/a8a0829c1661099e80f4d619a4a8b77d/value/7404071833681777848 ↵
 544152382 bytes, 9 block(s): OK
0. blk_-4483752819038443375_961039 len=67108864 repl=3 ↵
 [10.1.1.136:1004, 10.1.1.132:1004, 10.1.1.135:1004]
1. blk_-9090271957364756334_961045 len=67108864 repl=3 ↵
 [10.1.1.134:1004, 10.1.1.139:1004, 10.1.1.135:1004]
2. blk_-8663933707558762843_961045 len=67108864 repl=3 ↵
 [10.1.1.136:1004, 10.1.1.133:1004, 10.1.1.135:1004]
3. blk_-243708713912215859_961046 len=67108864 repl=3 ↵
 [10.1.1.131:1004, 10.1.1.136:1004, 10.1.1.135:1004]
4. blk_8889057014155026774_961047 len=67108864 repl=3 ↵
 [10.1.1.136:1004, 10.1.1.135:1004, 10.1.1.137:1004]

HDFS Maintenance Tasks | 199

www.it-ebooks.info

http://www.it-ebooks.info/

5. blk_-8973735748029935709_961048 len=67108864 repl=3 ↵
 [10.1.1.131:1004, 10.1.1.136:1004, 10.1.1.135:1004]
6. blk_2457643535020786460_961048 len=67108864 repl=3 ↵
 [10.1.1.131:1004, 10.1.1.133:1004, 10.1.1.135:1004]
7. blk_-903758822242531603_961049 len=67108864 repl=3 ↵
 [10.1.1.131:1004, 10.1.1.133:1004, 10.1.1.135:1004]
8. blk_4446759321669624116_961051 len=7281470 repl=3 ↵
 [10.1.1.137:1004, 10.1.1.132:1004, 10.1.1.135:1004]
...
/user/esammer/job17/part-00077 12500000000 bytes, 94 block(s):
 Under replicated blk_-3488281800025438592_84806. ↵
 Target Replicas is 3 but found 2 replica(s).
 Under replicated blk_-1241890260240671450_84813. ↵
 Target Replicas is 3 but found 2 replica(s).
 Under replicated blk_2951198656702268751_84813. ↵
 Target Replicas is 3 but found 2 replica(s).
 Under replicated blk_2030140999874428901_84815. ↵
 Target Replicas is 3 but found 2 replica(s).
...
0. blk_2806218775441650422_84812 len=134217728 repl=3 ↵
 [10.1.1.136:1004, 10.1.1.135:1004, 10.1.1.139:1004]
1. blk_-7693415728714491276_84812 len=134217728 repl=3 ↵
 [10.1.1.140:1004, 10.1.1.139:1004, 10.1.1.137:1004]
2. blk_-4047400381436606420_84812 len=134217728 repl=3 ↵
 [10.1.1.136:1004, 10.1.1.134:1004, 10.1.1.139:1004]
3. blk_6268554594414163694_84812 len=134217728 repl=3 ↵
 [10.1.1.132:1004, 10.1.1.136:1004, 10.1.1.139:1004]
4. blk_437166175380747476_84813 len=134217728 repl=3 ↵
 [10.1.1.138:1004, 10.1.1.132:1004, 10.1.1.139:1004]
5. blk_-3373529866329232880_84814 len=134217728 repl=2 ↵
 [10.1.1.137:1004, 10.1.1.139:1004]
6. blk_-6567492536488398932_84815 len=134217728 repl=3 ↵
 [10.1.1.137:1004, 10.1.1.132:1004, 10.1.1.139:1004]
7. blk_-5068856556266368904_84815 len=134217728 repl=3 ↵
 [10.1.1.138:1004, 10.1.1.137:1004, 10.1.1.139:1004]
...
/user/esammer/job18/part-00018: CORRUPT block blk_-7164267453697813302
 MISSING 125 blocks of total size 16648440800 B
0. blk_2190128488155518392_86488 len=134217728 MISSING!
1. blk_6387562258768894352_86505 len=134217728 MISSING!
2. blk_-2266931705749612258_86516 len=134217728 MISSING!
...
Status: CORRUPT
 Total size: 9113209169518 B (Total open files size: 372 B)
 Total dirs: 9206
 Total files: 14649 (Files currently being written: 10)
 Total blocks (validated): 87640 (avg. block size 103984586 B) ↵
 (Total open file blocks (not validated): 10)

 CORRUPT FILES: 21
 MISSING BLOCKS: 3846
 MISSING SIZE: 514487882400 B
 CORRUPT BLOCKS: 3846

 Minimally replicated blocks: 83794 (95.611595 %)

200 | Chapter 8: Cluster Maintenance

www.it-ebooks.info

http://www.it-ebooks.info/

 Over-replicated blocks: 0 (0.0 %)
 Under-replicated blocks: 4684 (5.3445916 %)
 Mis-replicated blocks: 0 (0.0 %)
 Default replication factor: 3
 Average block replication: 2.1531606
 Corrupt blocks: 3846
 Missing replicas: 4684 (2.4822075 %)
 Number of data-nodes: 9
 Number of racks: 1
FSCK ended at Fri May 25 17:20:34 PDT 2012 in 573 milliseconds

The filesystem under path '/' is CORRUPT

Directories are marked with <dir> and have no blocks. They exist only within the
metadata of the namenode.

A regular file in HDFS, listed with its size, the number of blocks it contains, and its
current status (either OK or CORRUPT).

A block entry. This is the first block (blocks are zero-indexed) in the file. It has a
length of 866 bytes and 3 replicas that can be found on the datanodes with the IP
addresses 10.1.1.140, 10.1.1.135, and 10.1.1.137.

A healthy file with nine blocks.

A file with missing replicas. This is usually the result when a datanode fails and
HDFS is in the process of creating new replicas. The file is said to be under-replicated
but healthy because at least one replica exists for all blocks. A list of the under-
replicated blocks appears immediately after the filename.

The block list of a file with under-replicated blocks. Block number 5
(blk_-3373529866329232880_84814) displays a replication factor of 2; the other
blocks have three replicas.

A corrupt file, missing all replicas of at least one block. In this example, the file is
missing 125 blocks, or more than 15GB of data.

The number of blocks that are minimally replicated. These files are healthy and can
still be read.

Under-replicated blocks are those that do not currently have the desired number of
copies. HDFS automatically repairs missing replicas over time by making new rep-
licas from available replicas.

A corrupt block (as opposed to a file) is one that has no available replicas.

The total number of missing blocks.

A truly healthy HDFS has no under-replicated, corrupt, or missing blocks. In the normal
course of operation, occasional network failures or host reboots can affect temporary
under-replicated blocks and aren't cause for a major concern. A complete datanode
failure will result in a spike in the number of under-replicated blocks, followed by a
slow decrease over time and should be monitored.

HDFS Maintenance Tasks | 201

www.it-ebooks.info

http://www.it-ebooks.info/

Running the fsck utility is a metadata-only operation. In other words, because all in-
formation fsck uses can be obtained from the namenode, there’s no need for it to
communicate with the datanodes in the cluster. The most interesting implication is
that fsck always returns the current state of the filesystem, according to the namenode.
The number of remote procedure calls made to the namenode can be high (ultimately,
it depends on the number of files in HDFS), so take care to perform checks during off-
peak times, when possible. At first glance, it may seem like fsck is a reasonable way to
monitor HDFS health, but many of the metrics it provides can be accessed program-
matically (and less computationally expensive) via the monitoring APIs. See Chap-
ter 10 for more information on configuring metric collection and monitoring. To run
the fsck utility:

1. Log in to the the machine running the namenode.

2. Become the HDFS superuser or a user with equivalent privileges.

3. Execute hadoop fsck / with the desired options.

To filter the onslaught of dots that fsck generates during a check, try
running hadoop fsck / | grep -v -E '^\.' instead. This command will
filter all lines that begin with a dot, removing much of the noise and
making the output more readable.

Balancing HDFS Block Data
Although the namenode attempts to distribute blocks evenly between datanodes when
it’s written, it is still possible for HDFS to become unbalanced. A poor distribution of
block data can reduce data locality in MapReduce, increasing network utilization and
reducing job performance, as well as wearing on the disks in some datanodes more
than others. This issue normally occurs in one of three cases: the addition of a new
datanode, mass deletion of data, or unevenly colocated clients.

Although running the balancer regularly can help with disk utilization
and MapReduce job performance, HBase is rather intolerant of it for
reasons related to how region servers read and access data. HBase users
should not run the balancer, even after adding new nodes. HBase reg-
ularly rewrites its data files (during a major compaction), which “fixes”
block distribution and data locality anyway.

Adding a new datanode to an existing cluster creates an imbalance in block data because
the new node’s disks are empty, while the rest of the datanodes maintain their existing
load. HDFS does not automatically move blocks to a node when it is added to the
cluster. Although it’s true that it will receive blocks from newly written files, HDFS will
continue to distribute these blocks evenly across all datanodes within the cluster. If the
namenode were to assign all new blocks to the new datanode instead, it would become
a bottleneck, impeding data ingestion as well as MapReduce job output.

202 | Chapter 8: Cluster Maintenance

www.it-ebooks.info

http://www.it-ebooks.info/

Rapid deletion of a large set of existing files may result in some datanodes having fewer
blocks than others. This, of course, depends on how well the files in question were
distributed with respect to one another—something not commonly measured. As a
contrived example, consider a cluster of three nodes in which nine one-block files are
written, each with a replication factor of 1 (in other words, each block corresponds to
an entire file). Further, assume a pure round-robin distribution of blocks across the
three nodes: datanode A would receive files 1, 4, and 7; datanode B 2, 5, and 8; and
datanote C 3, 6, and 9. You can see how deleting a specific group of files such as 1, 4,
and 7 could create disparity between nodes. Of course, the way the namenode chooses
to place blocks is not that simple—files usually have more than one block and clusters
have many more than three nodes—but this example should give you some idea of how
the problem can occur.

One of the most common (and sneaky) ways HDFS can become unbalanced is when
some nodes of the cluster nodes have colocated clients, while others do not. For lack
of a better term, a colocated client is an HDFS client that is running on a node that is
also a member of the HDFS cluster (or more precisely, a node that is a datanode). The
reason this situation is important has to do with the intended use case of HDFS: Map-
Reduce. In MapReduce, reducers write data to HDFS in almost all cases. Further, it’s
true that local disk IO is greater than writing to a disk across the network. It is for this
reason that the namenode will assign the local machine as the destination for the first
replica when an HDFS client is running on a datanode. If you consider that reducers
are usually evenly distributed throughout the cluster, tasktrackers and datanodes are
always colocated, and writing a local disk is faster than across the network, it makes
sense that colocated clients should always pick their local disk for the first replica. In
classic B-rated horror film tradition: what could possibly go wrong?

It turns out that in order to mitigate cost, it’s not uncommon for some to select a subset
of the cluster nodes to double as data ingest nodes on which they place services such
as Flume or other processes that write data into HDFS. The problem with this is that
the disks on these nodes fill faster than others because they’re always selected for the
first replica of every block written to HDFS. The tell-tale sign of unevenly colocated
clients is to look at the disk usage of all of the datanodes relative to one another (a view
available within the namenode web UI); machines that act as clients in addition to being
datanodes will show significantly higher disk usage than others.

To be clear, there’s nothing wrong with colocating clients with datanodes. In fact, this
ability is a feature of HDFS and the block placement policy. The pathological case of
uneven block distribution arises when clients are unevenly distributed within the clus-
ter. In some cases, it can’t be helped—there may be no other place where a client can
be run. In these instances, running the balancer regularly might be sufficient, or might
at least stave off the problem until other accommodations can be made.

The balancer works by first calculating the average block count per datanode and then
examining each datanode’s deviation from the average. If a node is below some per-
centage, it is said to be under-utilized; a node above some percentage is over-utilized.

HDFS Maintenance Tasks | 203

www.it-ebooks.info

http://www.it-ebooks.info/

This percentage is called the threshold and by default, it is 10%. Many administrators
find that they run the balancer and it immediately exits, stating that the cluster is bal-
anced. Usually, this is because the nodes are within the default threshold, which is a
wide range (remember, it’s plus/minus the threshold, so two nodes may have a differ-
ence of 20%). Specifying a threshold that is too small can lead to a balancer that never
completes on an active cluster. If you’re unsure, start with 5% and adjust accordingly.

The most notable effect of running the balancer is the amount of network bandwidth
it can consume. Fortunately, it is possible to control the rate at which data is transferred
over the network using the dfs.balance.bandwidthPerSec property. Bear in mind that
this is actually a property of the datanode and not the utility itself, as the datanode is
what actually performs the block transfers (it cannot be modified without restarting
the datanodes). Additionally, dfs.balance.bandwidthPerSec is defined in bytes rather
than bits, as you might expect.

Data transfer does not pass through the machine on which you run the balancer, al-
though the balancer does need to be able to communicate with the namenode. Inter-
rupting the balancer while it’s running is perfectly fine; block transfers in progress are
aborted and no new transfers will begin. Block replication is atomic from a client’s
perspective so there’s no danger of a client seeing a partially replicated block. Balancing
HDFS block data also requires administrator privileges, as with other administrative
commands:

1. Become the HDFS superuser or a user with equivalent privileges (or use sudo -u
username when executing commands).

2. Execute hadoop balancer -threshold N to run the balancer in the foreground,
where N is the percentage of blocks within which datanodes should be with one
another. To stop the process prematurely, press Control+C or kill process-id
from another terminal. Alternatively, Apache Hadoop users can run the process in
the background using the start-balancer.sh script; CDH users should use the
hadoop-0.20-balancer init script.

3. Monitor the output (or log file, if you choose to run the balancer in the background)
to track progress.

Dealing with a Failed Disk
With a large number of machines that each have many disks, it’s not unusual for disks
to fail. Both HDFS and MapReduce are built to tolerate disk failures, as you’ve seen,
but at some point failed disks do need to be replaced. Disk failures in worker nodes are
usually much simpler to handle than those that occur on master nodes. The process
involves temporarily removing the node from the cluster, replacing the drives, and
reintroducing the node. Worker processes such as the datanode and tasktracker can
be stopped to remove the affected node from the cluster prior to performing mainte-
nance, as described in “Starting and Stopping Processes with Init
Scripts” on page 195. In extremely busy clusters, it may make sense (time permitting)

204 | Chapter 8: Cluster Maintenance

www.it-ebooks.info

http://www.it-ebooks.info/

to follow the decommissioning process (see “Decommissioning a Data-
node” on page 197) for the datanode to maintain a full complement of replicas.

Technically Hadoop doesn’t detect bad disks. Instead, it checks specific attributes of
special directories such as the datanode block directories (dfs.data.dir) and MapRe-
duce scratch space (mapred.local.dir). A path is said to be healthy and available if and
only if the following are all true:

1. The specified path is a directory.

2. The directory exists.

3. The directory is readable.

4. The directory is writable.

A path that doesn’t meet all of these criteria is reported as failed. Any blocks (in the
case of the datanode) that were in this directory are assumed to be lost and are removed
from the list of blocks that the datanode in question considers available. When the
datanode detects one of these failures, it logs the condition and sends an updated block
report to the namenode. The namenode then updates the replication count for the
affected blocks and creates new replicas of the now under-replicated blocks.

The datanode will shut down if more disks than dfs.datanode.failed.volumes.toler
ated fail. By default, this parameter is set to zero, which means that a single disk failure
results in the entire datanode failing. Some believe that a machine should remove itself
from the cluster in the face of any failures; others feel it’s fine to tolerate some low
number of failures. Either way, dfs.datanode.failed.volumes.tolerated should be a
low number, as a large number of disk failures usually indicates a larger problem such
as a failed controller. Follow these steps:

1. Stop any Hadoop-related processes (optionally following the decommissioning
process for the datanode).

2. Replace any failed disks.

3. Follow the process for adding the node back into the cluster.

4. Run the Hadoop fsck utility to validate the health of HDFS. Over-replicated blocks
are normal immediately after a node is reintroduced to the cluster, which is auto-
matically corrected over time.

MapReduce Maintenance Tasks

Adding a Tasktracker
Tasktrackers, like datanodes, immediately connect to their master process (the job-
tracker) upon startup. Each heartbeat sent to the jobtracker advertises the available
number of map and reduce slots available on the node, with assignment taking place
in the response to the heartbeat. Before starting the tasktracker, the datanode should

MapReduce Maintenance Tasks | 205

www.it-ebooks.info

http://www.it-ebooks.info/

be started and HDFS balanced. This isn’t a technical requirement, so don’t panic if the
processes are started in the opposite order, but performing these tasks in this order
ensures that when the tasktracker is assigned work, there is local block data. If the
tasktracker is started before the datanode, there will be no data locally available and
all block data will be streamed across the network. This situation can lead to a storm
of network traffic that impacts data ingestion or other tasks running on the cluster. The
steps are as follows:

1. Follow the procedure for adding a datanode to HDFS.

2. Run the balancer utility to distribute existing block data to the new datanode.

3. Start the tasktracker process.

4. Confirm that the jobtracker can communicate with the new tasktracker by check-
ing the number of available tasktrackers in its web user interface.

Decommissioning a Tasktracker
Unlike the datanode, there is no graceful way to decommission a tasktracker. Admin-
istrators tend to rely on the task failure and retry semantics of MapReduce when re-
moving a tasktracker from the cluster. That is, a tasktracker process is stopped with
the assumption that any currently executing tasks will fail and be rescheduled elsewhere
on the cluster. It is possible that a task on its final attempt is running on the tasktracker
in question and that a final failure may result in the entire job failing. Unfortunately,
in an active cluster, it’s not always possible to detect and prevent this case from occur-
ring. For this reason, developers should be strongly encouraged, if not required, to build
production processes that are resilient to job failures (usually by monitoring their status
and resubmitting them, should they fail). Ad hoc MapReduce jobs are usually less of a
concern, although failures are still undesirable. To decommission a tasktracker:

1. Stop the tasktracker process.

2. Monitor currently executing MapReduce jobs to confirm that task failures are re-
scheduled and any job-level failures are properly addressed.

Killing a MapReduce Job
Sometimes it’s necessary to kill a MapReduce job executing on the cluster. Normally,
this is done in response to a user request (in the case of interactive, ad hoc jobs) or an
errant production job. Killing a MapReduce job is akin to terminating a SQL query in
a relational database; the job, including any outstanding tasks, is abandoned, and the
client that initiated it is notified that it has failed to complete. Any temporary map
output data as well as partially written reducer output is discarded. To kill the job,
complete the following steps:

1. Become the HDFS superuser or a user with equivalent privileges (or use sudo -u
username when executing commands).

206 | Chapter 8: Cluster Maintenance

www.it-ebooks.info

http://www.it-ebooks.info/

2. Execute hadoop job -list or use the jobtracker web user interface to find the job
ID of the job you wish to terminate.

3. Execute hadoop job -kill jobID to terminate the job.

4. Confirm that the job is terminated using hadoop job -list or by checking the
jobtracker web user interface.

Killing a MapReduce Task
Although it is occasionally necessary to kill an entire MapReduce job, other times call
for a lighter touch. The stateless paradigm of MapReduce task processing (save for the
attempt counter) enables administrators to kill tasks of a job that may be misbehaving
rather than the job itself. This approach can be useful if a specific task is causing a
problem on a machine and the administrator would like the framework to relocate the
work. By killing the task, we can force the jobtracker to reattempt the work elsewhere.
Unfortunately, it’s not guaranteed that the jobtracker will select another worker; some-
times the task will be immediately reassigned to the same machine. It does, however,
force the task to reenter the scheduler queue, possibly delaying execution of the task
and reducing temporary contention for system resources, for instance.

It is possible that a task is experiencing problems not because of the worker on which
it executes but because of the data it is assigned to process. We’ll discuss common
reasons tasks fail in Chapter 9. To kill the task:

1. Become the HDFS superuser, a user with equivalent privileges, or the owner of the
MapReduce job (or use sudo -u username when executing commands).

2. Locate the task attempt you wish to kill using hadoop job -list-attempt-ids jobID
taskType taskState, where jobID is the job ID of the job that contains the task
attempt, taskType is the type of task (such as map, reduce), and taskState is the
current state of the task (such as running, completed). Alternatively, the jobtracker
web user interface can be used to locate the task attempt ID.

3. Execute hadoop job -kill-task taskAttemptId to kill the task.

Dealing with a Blacklisted Tasktracker
With a large number of machines in a cluster, it’s not uncommon for individual ma-
chines to fail for one reason or another. In some cases, these failures are soft failures,
in which the machine continues to operate but throws spurious errors that cause Map-
Reduce tasks to fail. To protect the cluster from misbehaving hosts, Hadoop MapRe-
duce can temporarily blacklist machines, removing them from the available pool of
workers, either for a single job or globally.

The heuristic for blacklisting a tasktracker is simple but effective. Any tasktracker with
three or more failed tasks from a single job is ineligible to receive any further tasks for
that job. This is Hadoop’s penalty box. Tasks from others jobs may still be assigned to

MapReduce Maintenance Tasks | 207

www.it-ebooks.info

http://www.it-ebooks.info/

the (potentially) problematic tasktracker during this time. Tasktrackers may be black-
listed at the job level from time to time, usually due to poorly written MapReduce code
in which tasks rapidly fail due to an error in logic.

Sometimes, however, the failures are persistent over multiple MapReduce jobs. These
failures are more severe, in that they impact the health of many unrelated jobs, each of
which now has tasks that must be reattempted. If tasks continue to fail on the same
tasktracker, the jobtracker adds the host to a global blacklist and it will not receive any
work for 24 hours, by default. This issue is indicative of something wrong with the
configuration of the host or the hardware itself and should be diagnosed at the first
opportunity. Because the cluster can protect itself by quarantining tasktrackers this
way, it’s usually unnecessary to wake up a human in the middle of the night for such
an incident. A rapid increase in the number of machines in the global blacklist, however,
is cause for alarm and is almost always due to misconfiguration on an active cluster.

Currently, there is no graceful way to administratively remove a machine from the
global blacklist. The jobtracker retains this information in memory. A less than polite
way of forcing the jobtracker to forgive a host is to restart either the offending task-
tracker (which will register as a new instance with the jobtracker upon restart) or the
jobtracker, in which case the blacklist is cleared entirely. Restarting the jobtracker tends
to be invasive, as it also discards all information about all currently executing
MapReduce jobs.

There is a parameter called mapred.jobtracker.restart.recover that,
when set to true, attempts to serialize the jobtracker’s state to disk so
that it may be preserved between restarts. Some users have reported that
this feature, though desirable, is not always reliable. In some cases, the
jobtracker is unable to recover its state when restarting and all job in-
formation is lost. Additionally, enabling this parameter significantly in-
creases the startup time of the jobtracker. For these reasons, many ad-
ministrators choose to leave this feature disabled.

208 | Chapter 8: Cluster Maintenance

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Troubleshooting

Throughout this book, the notion that Hadoop is a distributed system made up of
layered services has been a repeating theme. The interaction between these layers is
what makes a system like this so complex and so difficult to troubleshoot. With com-
plex moving parts, interdependent systems, sensitivity to environmental conditions and
external factors, and numerous potential causes for numerous potential conditions,
Hadoop starts to look like the human body. We’ll treat it as such (with my apologies
to the medical field as a whole).

Differential Diagnosis Applied to Systems
A significant portion of problems encountered with systems, in general, remain so be-
cause of improper diagnosis.1 You cannot fix something when you don’t know what’s
truly wrong. The medical field commonly uses a differential diagnosis process as a way
of investigating symptoms and their likelihood in order to properly diagnose a patient
with a condition. Differential diagnoses, for those of us without an MD, is essentially
a knowledge- and data-driven process of elimination whereby tests are performed to
confirm or reject a potential condition. In fact, this isn’t as exotic a concept as it initially
sounds when you think about how our brains attack these kinds of problems. It does,
however, help to formalize such an approach and follow it, especially when things go
wrong and your boss is standing over your shoulder asking you every five minutes
whether it’s fixed yet. When things go wrong, take a long, deep, breath and put on your
white coat.

1. Develop a patient history.

Each patient (a host, cluster, network) has a story to tell. Gather a history of what
has occurred most recently to the various components of the system that may help

1. I have no empirical data to back this argument up. Anecdotally, however, it has been true in teams I’ve
been a part of, managed, or talked to, and I’d put money on it being universally so.

209

www.it-ebooks.info

http://www.it-ebooks.info/

in diagnosis. Recent maintenance operations, configuration changes, new hard-
ware, and changes in load are all points of interest.

2. Develop a list of potential diagnoses.

Write them down on a whiteboard. Nothing is dumb, but each diagnosis should
pass the sniff test. Nothing comes off the list without a test that disproves the
diagnosis as a possibility.

3. Sort the list by likelihood.

Given what you know about the probability that a condition occurs in the wild,
but also in the context of the patient and the environment, sort the list of diagnoses.
The most common ailments should float to the top of the list; they’re common for
a reason. Examine the patient history for anything that would change your mind
about the probability something is the root cause of the problem. Hold tight to
Occam’s razor, and when you hear hooves, look for horses, not zebras—unless
you’re in an area where zebras are incredibly common.

4. Test!

Systematically work down the list, performing tests that either confirm or reject a
given condition. Tests that eliminate multiple potential conditions should be per-
formed sooner rather than later. Update the list if you find new information that
would indicate you missed a potential condition. If you do update the list, go back
to step 3 and repeat the process.

5. Diagnosis.

As you work through various tests, you’ll either find the problem or come out with
no diagnosis. If you eliminate all possibilities, you’ve either missed a possible di-
agnosis in step 2 or incorrectly eliminated one based on a bad test (or misinter-
pretation of the results).

The tests performed when diagnosing systems are actually faster (and certainly cheaper)
than what doctors need to do. The complete battery usually includes OS utilities such
as top, vmstat, sar, iostat, and netstat, but also Hadoop-specific tools such as hadoop
dfsadmin, and hadoop fsck. Log files are how machines communicate with us, so make
sure you’re always listening to what they have to say.

All of this sounds silly—and we’re not necessarily saving lives. That said, the process
of critical evaluation of data to arrive at an informed decision is nothing to laugh at.
This method of looking at problems and solutions works, but it’s only as good as the
information you have. We’ll use this approach to diagnosing problems encountered
with Hadoop and point out some specific examples where it was used to find rather
unintuitive problems in production systems.

210 | Chapter 9: Troubleshooting

www.it-ebooks.info

http://en.wikipedia.org/wiki/Zebra_(medicine)
http://www.it-ebooks.info/

Common Failures and Problems
There’s an abundance of things that can go wrong with Hadoop. Like other systems,
it’s subject to the host environment on which its daemons run, but additionally so on
the union of all hosts within the cluster. It’s this latter part that complicates any system
to such a degree. All of the standard things that can happen on a single host are mag-
nified when hosts and services become dependent upon one another. The management
and configuration of any distributed system dramatically increases the universe of
things that can go wrong, and Hadoop is no exception to that.

Just as doctors have the Diagnostic and Statistical Manual of Mental Disorders, or
DSM, to describe and codify the known universe of disorders, administrators too need
a set of known conditions and criteria for classification. What follows is a short list of
some of the more prevalent conditions found when diagnosing Hadoop.

Humans (You)
More than anything, humans tend to cause the most havoc when it comes to the health
of systems and machines. Even the most innocuous, mundane tasks can easily result
in downtime. This isn’t specifically a Hadoop problem as much as it is a general system
administration issue. I’ll put my money where my mouth is on this one and share a
story with you.

I was once dispatched to a data center to fix a redundant loop that failed on a large
SAN backing a production relational database. The system was up and running but
had simply lost a redundant link; it was degraded. After all due diligence and planning,
I left the office and went to the data center, laptop in hand, to fix the problem. Once
in the data center, I carefully opened the racks, checked the physical state of everything,
and confirmed that there was sufficient capacity on one of power distribution units in
the racks with the storage before I plugged in my laptop…or so I thought. I plugged in
the laptop and powered it on and immediately tripped a circuit in the rack. I panicked
for a second until I realized that all power was redundant, fed by different circuits.
Unfortunately, everything switching over at once must have caused a spike in load, or
maybe some fans spun up, but within a few seconds, the redundant circuit popped as
well and in the cabinet containing the SAN controller. Everything went quiet in the
aisle, as if in observance of a moment of silence for what I had just done. Turns out, I
just wasn’t careful enough when I read the PDU display on power consumption and
someone else had run a couple power cables from the next rack over when installing
some machines a few days earlier. We worked fast and fixed the problem, but we all
learned a couple of lessons that day (especially me) about the real cause of failures.

In retrospect, it’s easy to see all of the things that went wrong and how silly the whole
situation was. It was entirely preventable (in fact, nothing like it ever happened again).
You can never be careful enough. Every system administrator has a horror story. What’s

Common Failures and Problems | 211

www.it-ebooks.info

http://www.psych.org/practice/dsm
http://www.it-ebooks.info/

truly important is recognizing the likelihood of such a situation so that it takes a proper
place in the diagnostic process.

Misconfiguration
Kathleen Ting, a manager on Cloudera’s support team gave a talk at HadoopWorld
2011 in New York City, supported by research done by Ari Rabkin, where she talked
about common failures and their cause. She revealed that 35% of tickets handled by
the Cloudera support team were due to some kind of misconfiguration, within either
Hadoop or the operating system. Further, these tickets accounted for 40% of the time
spent by the team resolving issues with customers. This is not to say that the users were
necessarily twiddling configuration parameters randomly—in fact, many are advanced
users of multiple projects in the Hadoop ecosystem—but that the interaction between
the numerous parameters leads to all kinds of unintended behavior.

It’s possible to dismiss that argument and say that Hadoop is still young technology,
that this situation will improve in time. Take the Oracle relational database, one of the
most widely deployed relational database systems today. Many agree that with its
myriad parameters, it can be incredibly difficult to configure optimally. In fact, it’s so
specialized that it even has its own job title: Oracle Database Administrator. Now con-
sider that Oracle, as a product, is about 32 years old. This kind of story is not unique
(although maybe Oracle is an extreme example) in large, complex systems.

So what can be done to mitigate misconfiguration? Here are a few tips:

• Develop a solid understanding of the precedence of configuration value overrides.

• Start with the basic parameters required for operation, such as storage locations,
hostnames, and resource controls. Make sure that the cluster works with the min-
imal necessary set before graduating to the performance- and security-related pa-
rameters.

• Before setting anything, make sure you have a good idea about what it does.

• Double-check the unit of each parameter you set. Many parameters are expressed
in bytes; a few are in megabytes.

• With each release, look for any parameters that changed in meaning or scope. Audit
your configuration files frequently.

• Use a configuration management and deployment system to ensure that all files
are up-to-date on all hosts and that daemons are properly restarted to affect
changes.

• Before and after making configuration changes, run a subset of MapReduce jobs
to evaluate the performance and resource consumption impact of the changes.

Beyond Hadoop proper, operating system misconfiguration is an equal source of pain
in maintaining health clusters. Common problems include incorrect permissions on
log and data directories and resource limits such as the maximum allowed number of

212 | Chapter 9: Troubleshooting

www.it-ebooks.info

http://bit.ly/cloudera_talk
http://www.it-ebooks.info/

simultaneously opened files being set to their defaults. This problem tends to happen
when the initial setup and configuration of machines is not automated and the cluster
is expanded. Clusters configured by hand run a significant risk of a single configuration
step being accidentally missed. Of course, those who read through the recommenda-
tions in Chapters 4 and 5 should be able to dodge most of the fun and excitement of
misconfiguration, but it happens to the best of us. Always have it on your list of potential
culprits when generating your list of potential conditions.

Hardware Failure
As sure as the sun will rise, hardware will fail. It’s not unheard of to have problems
with memory, motherboards, and disk controllers, but the shining gem of the prob-
lematic component kingdom is the hard drive. One of the few components with moving
parts in the modern server, the hard drive suffers from physical wear and tear during
normal operations. All drive manufacturers advertise one of a number of different
measures of drive failure rates: mean time to failure (MTTR), mean time between fail-
ures (MTBF), or annualized failure rate (AFR). The way these numbers are calculated
can be confusing, and it’s worth noting that they all apply to averages over a given
period of time for a specific population, not the specific devices living in your machines.
In other words, expect failures at all times, regardless of advertised metrics. Have spare
components at the ready whenever possible, especially for mission-critical clusters.

Unfortunately, hardware rarely fails outright. Instead, it tends to degrade over time,
leading to subtle, temporary failures that are compensated for by software components.
Hadoop is excellent at masking, by way of compensation, impending hardware failures.
HDFS will detect corrupt data blocks and automatically create new, correct replicas
from other healthy copies of the data without human intervention. MapReduce auto-
matically retries failed tasks, temporarily blacklists misbehaving hosts, and uses spec-
ulative execution to compensate for under-performing hardware. All of these features
double as masking agents, so although this functionality is critical, it is not a panacea.
You shouldn’t need to wake up in the middle of the night for a corrupt HDFS block,
but you should always track the rate of anomalous conditions in an effort to root out
bad hardware.

Resource Exhaustion
CPU cycles, memory, disk space and IO, and network bandwidth are all finite resources
for which various processes contend in a cluster. Resource exhaustion can be seen as
a specialized subclass of misconfiguration. After all, an administrator is responsible for
controlling resource allocation by way of configuration. Either way, it does occur and
it tends to be high on the list of things that go wrong in the wild.

Resource allocation can be seen as a hierarchy. A cluster contains many hosts, which
contain various resources that are divided amongst any tasks that need to run. Or-
thogonally, both the Hadoop daemons and user tasks consume these resources. It’s

Common Failures and Problems | 213

www.it-ebooks.info

http://www.it-ebooks.info/

possible that a disk running out of space causes a Hadoop daemon to fail or a task hits
its maximum JVM heap size and is killed as a result; these are both equal examples of
resource exhaustion. Because Hadoop accepts arbitrary code from users, it’s extremely
difficult to know in advance what they might do. This is one of the reasons Hadoop
has so many parameters to control and sandbox user tasks. The framework inherently
does not trust user-supplied code and for good reason, as task failures due to bugs or
job-level misconfiguration are extremely common.

You should measure and track task failures to help users identify and correct misbe-
having processes. Repetitive task failures occupy task slots and take resources away
from other jobs and should be seen as a drain on overall capacity. Conversely, starving
the Hadoop daemons for resources is detrimental to all users and can negatively affect
throughput and SLAs. Proper allocation of system resources to the framework and your
users is just as critical in Hadoop as it is any other service in the data center.

Host Identification and Naming
Like resource exhaustion, host identification and naming must be explicitly called out
as a special kind of misconfiguration. The way that a worker host identifies itself to the
namenode and jobtracker is the same way clients will attempt to contact it, which leads
to interesting types of failures where a datanode, because of a misconfigured /etc/
hosts entry, reports its loopback device IP address to namenode and successfully heart-
beats, only to create a situation in which clients can never communicate with it. These
types of problems commonly occur at initial cluster setup time, but they can burn
countless hours for administrators while they try and find the root cause of the problem.
The Hadoop mailing lists, for instance, are full of problems that can ultimately be traced
back to identification and name resolution problems.

Network Partitions
A network partition is (informally) described as any case in which hosts on one segment
of a network cannot communicate with hosts on another segment of the network.
Trivially, this can mean that host A on switch 1 cannot send messages to host B on
switch 2. The reason why they cannot communicate is purposefully left undefined here
because it usually doesn’t matter;2 a switch, cable, NIC, or even host failure of the
recipient all look the same to the sender participating in the connection (or vice versa).
More subtly, a delay in delivering messages from one host to another above a certain
threshold is functionality identical to not delivering the message at all. In other words,
if a host is unable to get a response within its acceptable timeout from another machine,
this case is indistinguishable from its partner simply being completely unavailable. In
many cases, that’s exactly how Hadoop will treat such a condition.

2. Cloudera engineer Henry Robinson wrote a fantastic blog post covering this in the context of the CAP
theorem.

214 | Chapter 9: Troubleshooting

www.it-ebooks.info

http://www.cloudera.com/blog/2010/04/cap-confusion-problems-with-partition-tolerance/
http://www.it-ebooks.info/

Network partitions are dubious in that they can just as easily be the symptom or the
condition. For example, if one were to disable the switch port to which a host were
connected, it would certainly be the root cause of a number of failures in communica-
tion between clients and the host in question. On the other hand, if the process that
should receive messages from a client were to garbage collect for an excessive period
of time, it might appear to the client as if the host became unavailable through some
fault of the network. Further, short of absolute hardware failure, many network parti-
tions are transient, leaving you with only symptoms remaining by the time you inves-
tigate. An historical view of the system, with proper collection of various metrics, is the
only chance one has to distinguish these cases from one another.

“Is the Computer Plugged In?”
Let’s be honest: there’s no simple script to follow when performing tests to confirm or
reject a diagnosis. There are different frameworks you can use, though, to make sure
you cover all bases. It isn’t feasible to walk through a multihundred-line-long call-
center-style script when you’re in the middle of a crisis. Again, in contrast to the medical
field, doctors are taught silly little mnemonics to help them remember the various sys-
tems to consider when troubleshooting human beings. Given that they (arguably) have
a lot more on the line than most administrators dealing with a problematic cluster, we’ll
build on their wisdom and experience. Hang on—things are about to get a little cheesy.

E-SPORE
In the midst of all the action when a failure does occur, it’s important to follow some
kind of process to make sure you don’t miss performing a critical test. Just as coming
up with the complete list of potential causes of a failure is important, you must be able
to correctly confirm or reject each using the appropriate tests. It’s not unusual that
administrators forget to check something, and it’s not always clear where to start. When
you’re at a loss or when you want to make sure you’ve thought of everything, try E-
SPORE. E-SPORE is a mnemonic device to help you remember to examine each part
of a distributed system while troubleshooting:

Environment
Look at what’s currently happening in the environment. Are there any glaring,
obvious issues? Usually something has drawn your attention to a failure, such as
a user filing a ticket or a monitoring system complaining about something. Is this
unusual, given the history of the system? What is different about the environment
now from the last time everything worked?

Stack
Consider the dependencies in the stack. The MapReduce service depends on HDFS
being up, running, and healthy. Within each service lives another level of depen-
dencies. All of HDFS depends on the namenode, which depends on its host OS,

“Is the Computer Plugged In?” | 215

www.it-ebooks.info

http://www.it-ebooks.info/

for example. There’s also the more specific dependencies within the services like
the jobtracker’s dependency on the namenode for discovering block locations for
scheduling, or an HBase region server’s dependency on the ZooKeeper quorum.
The entire cluster also has shared dependency on data center infrastructure such
as the network, DNS, and other services. If the jobtracker appears to be failing to
schedule jobs, maybe it’s failing to communicate with the namenode.

Patterns
Look for a pattern in the failure. When MapReduce tasks begin to fail in a seemingly
random way, look closer. Are the tasks from the same job? Are they all assigned to
the same tasktracker? Do they all use a shared library that was changed recently?
Patterns exist at various levels within the system. If you don’t see one within a failed
job, zoom out to the larger ETL process, then the cluster.

Output
Hadoop communicates its ailments to us by way of its logs. Always check log
output for exceptions. Sometimes the error is logically far from the original cause
(or the symptom is not immediately indicative of the disease). For instance, you
might see a Java NullPointerException that caused a task to fail, but that was only
the side effect of something that happened earlier that was the real root cause of
the error. In fact, in distributed systems like Hadoop, it’s not uncommon for the
cause of the error to be on the other side of the network. If a datanode can’t connect
to the namenode, have you tried looking in the namenode’s logs as well as the
datanode?

Resources
All daemons need resources to operate, and as you saw earlier, resource exhaustion
is far too common. Make sure local disks have enough capacity (and don’t forget
about /var/log), the machine isn’t swapping, the network utilization looks normal,
and the CPU utilization looks normal given what the machine is currently doing.
This process extends to intra-process resources such as the occupied heap within
a JVM and the time spent garbage collecting versus providing service.

Event correlation
When none of these steps reveal anything interesting, follow the series of events
that led to the failure, which usually involves intermachine, interprocess event
correlation. For example, did a switch fail that caused additional replication traffic
due to lost datanodes, or did something happen to the datanodes that caused a
switch to be overrun with replication traffic, causing its failure? Knowing the cor-
rect order of events and having this kind of visibility into the system can help you
understand byzantine failures.

There’s nothing cheesier than a retrofit mnemonic device, but some form of regimented
approach is necessary to properly evaluate the state of a system when troubleshooting.
At each stage, there are some obvious test cases to be performed. Resource consumption
is simple and relatively easy to understand, for instance, with tools such as df, du, sar,
vmstat, iostat, and so forth. At the other end of the spectrum are more advanced

216 | Chapter 9: Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

techniques such as event correlation that require far more Hadoop-specific knowledge
about the noteworthy events that occur within a system and some infrastructure to be
able to extract and visualize that data in various ways. At its simplest, this can be cluster
topology changes (nodes joining and leaving the cluster), rapid changes in the observed
metric values (when standard deviation of the last N samples is greater than some
threshold), and user actions such as job submission or HDFS file changes. Exactly
which tool you use is less important than having an understanding of the type of data
to look at and how.

Treatment and Care
Once the root cause of a problem has been identified, only then should a specific course
of action be taken. Far too often, so-called shotgun debugging3 occurs in moments of
crisis. This approach usually ends in a series of corrective actions being taken that aren’t
necessarily needed, which increases the risk of additional disruption or damage to the
system. You should absolutely avoid the urge to make changes until you know there’s
a high likelihood you’ve found the root cause of a particular issue. It’s also important
that detailed notes are kept about what actions are eventually taken and why. Always
ask yourself if you or another member of the team would be able to solve the same
problem if it happened again in a month.

Often there are multiple options for treatment, each with associated risk and side ef-
fects. Clearly the best scenario is one in which a problem is detected, diagnosed, and
“cured” permanently. That, of course, is not always possible. Resolution can be clas-
sified into a number of different buckets:

Permanent eradication
The ideal case, in which a problem is simply solved. Usually, these are trivial,
expected issues such as disk failures or an overly verbose log consuming disk space.
An administrator fixes the issue, makes a note of what was done, and moves on
with life. We should all be so lucky.

Mitigation by configuration
Some problems have no immediate solution and must be mitigated until the root
cause can be stamped out. These tend to be slightly more complicated cases in
which the risk of making a permanent change is either too risky or would take too
long. A common instance of this is a user’s MapReduce job that repeatedly runs
out of memory while processing a given dataset. Even if it’s decided that there is a
better way of writing the job so as to not consume so much RAM, doing so at 3:00
in the morning without proper code review and testing probably isn’t the time to
do so. It may, however, be possible to mitigate the problem by temporarily in-

3. Shotgun debugging describes an unfocused series of corrective actions being attempted in the hope that
you hit the target. Like a shotgun, the lack of precision usually has significant unintended consequences.

Treatment and Care | 217

www.it-ebooks.info

http://www.it-ebooks.info/

creasing the amount of memory allotted to MapReduce jobs until such time the
code can be fixed.

Mitigation by architecture
Similar to mitigating a problem by changing configuration, it’s sometimes better
to change the architecture of a particular system to solve a problem. One slightly
more advanced instance of this being the case is in solving slot utilization and job
runtime problems. Let’s assume that a MapReduce job processing a large dataset
runs hourly, and every time it runs, it produces tens of thousands of tasks that
would otherwise monopolize the cluster. As you learned in Chapter 7, we can use
either the Fair or Capacity Scheduler to prevent the job from taking over. The
problem is that the job still may not complete within a desired window of time
because it takes a lot of time to churn through all the tasks. Rather than try to figure
out how to handle so many tasks, we can try to mitigate the problem by looking
at ways of reducing the number of tasks. We can’t very well magically reduce the
size of the data, but we can look at how much data is processed by each task.
Remember that in many cases, there’s roughly one map task per HDFS block of
data. It’s possible that there are so many tasks because there are a large number of
very small, one-block files. The solution to this problem is architectural and in-
volves changing the way data is written to involve a smaller number of larger files.
Look at the size of the input split processed by each map task in the job (contained
in the task logs) and work with the development team to find a more efficient way
of storing and processing the data.

Mitigation by process
Another way to look at the previous problem is to say that it’s not a code or ar-
chitecture problem but a process problem. Maybe the job and its input data is as
optimized as things are going to get and there’s no remaining room for improve-
ment. Another possibility to consider is shifting the time at which the offending
job executes. Maybe there’s simply a better time it can run. If it’s an ad hoc job,
maybe there should be an upper bound on how much data a single job can process
at once before it loses an SLA. Alternatively, it could be that a summarized or highly
compressed version of the dataset should be built to facilitate the offending job,
assuming that it’s so critical that it must run. Some of these options are as much
architectural changes as they are about changing the process by which the cluster
is managed.

218 | Chapter 9: Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

On “Reboot It” Syndrome
The propensity for rebooting hosts or restarting daemons without any form of inves-
tigation is the opposite of everything discussed thus far. This particular form of disease
was born out of a different incarnation of the 80/20 rule, one in which 80% of the users
have no desire or need to understand what the problem is or why it exists. As admin-
istrators, we exist within the 20% for whom this is not—nor can we allow it to become
—the case. By defaulting to just restarting things, you’re defaulting to the nuclear op-
tion, obliterating all information and opportunities to learn from an experience.
Without meaningful experience, preventative care simply isn’t possible.

Consider for a moment what would happen if doctors opted for the medical version of
“reboot it.” Maybe they’d just cut off anything that stopped working.

Detecting, reacting to, and correcting an issue is generally seen as the problem-solving
process. Unfortunately, this is a problem in and of itself because it misses the real
opportunity: to learn from the failure. Incorporating new experiences can, and should,
influence future behavior and ability. This approach means detecting related problems
faster and reducing the time to resolution, of course, but even that isn’t the true win.

Imagine you’re on a bike going down an enormous hill without brakes. You lose control
of the bike, crash, and wind up in the hospital. Don’t worry, though, because eventually
you make a complete recovery. Months later, you find yourself at the top of a hill that
looks remarkably similar to the one where you were injured. Worse, the bike has an
odd familiarity to it as well. You begin to realize something. The uneasy feeling in your
stomach is experience, and it’s screaming at you to not go down the hill. That is the
true value of experience: preventative maintenance. Being able to recognize and prevent
a similar situation from occurring is what saves us from the repetition of unpleasant
situations. It’s true that you could buy a helmet or learn to roll when you hit the ground,
but you could also not ride a bike with no brakes down a hill.

With administration of complex production systems, it’s not as simple as deciding to
not go down the hill. By the time you’re on the bike at the hill, it’s too late. Instead,
you need to take action long before you find yourself in such a situation. Action, in this
context, means updating processes, code, and monitoring to incorporate what you’ve
learned as a result of the incident. Taken in aggregate, most agree that preventative
maintenance is cheaper (expressed in terms of code, time, money, and availability) than
emergency maintenance and is well worth the investment. Of course, this line of rea-
soning can be taken too far, to the point at which overreaction can mean that heavy-
weight processes are put in place that impede productivity and flexibility. Like most
things, preventative care can be overdone, so care should be exercised. Each change
should be evaluated in the context of the likelihood that the given problem would repeat
in the future, or if it were truly annomolous. In other words, do not build systems and
processes around the most uncommon case you have encountered. Every decision
should be a function of probability of occurrence and the associated impact when it
does occur.

Treatment and Care | 219

www.it-ebooks.info

http://www.it-ebooks.info/

One incredibly useful tool in the preventative maintenance toolbox is the postmortem.
It doesn’t need to be a formal process, beyond actually holding it, and it should be open
to anyone who wishes to attend. Anyone involved in the incident should attend, and
the person with the most knowledge of the situation should lead it. Start by summa-
rizing the problem and the end result, and then walk through the timeline of events,
calling out anything interesting along the way. If the incident involved multiple systems,
have the person with the most knowledge of each system handle that part of the walk-
through. Allow attendees to ask questions along the way about the decisions that were
made or comment on an approach that might have worked better. At the end, write a
synopsis of what happened, why, what was done about it, and what you’re doing to
help prevent it in the future. Everyone should ask questions about the likelihood of a
repeat occurrence, the resultant damage (in terms of time, money, data loss, and so
on), and any other pertinent points that would be useful to know in the future.

Worth noting is that the postmortem is commonly avoided because it tends to make
people feel like they’re being singled out. This is a valid concern: no one likes to think
they’ve done a bad job. But it’s also extremely unfortunate, as the postmortem is one
of the best ways to prevent similar situations going forward. Walking through the
timeline can help everyone, including anyone who maybe made a less-than-stellar de-
cision along the way, understand where they can change their thinking and improve in
the future. The postmortem is absolutely not, nor should it ever be permitted to be, a
blame session. It’s critical that those participating be both respectful and cognizant of
the fact that others are putting it out there for all the group to see, so to speak. Create
an environment where making mistakes is forgivable, honesty is praised, and blame
and derision are not tolerated, and you will have a stronger team and better systems as
a result.

At the time of this writing, Amazon Web Services, a popular infrastructure as a service
cloud provider, had a large power outage that impacted a large swath of EC2 users.
One of these customers was Netflix, a rather public and large-scale customer of the
service. Although the incident itself was short-lived (comparatively), Netflix had an
extended outage due to the way some of their systems were built. In fact, one of the
reasons they had such an outage was a fix they had made to their code as the result of
a different failure they previously observed. The Netflix team rather bravely posted a
fantastic example of a postmortem of the incident on their public tech blog.

War Stories
Talking about the theory and process of troubleshooting is useful, even necessary.
However, it’s equally important to see how these techniques apply to real-world sce-
narios. What follows is a number of cases of real production problems with some depth
on what it took to detect and resolve each case. In certain cases, details have been
changed or omitted to protect the innocent, but the crux of the issue remains.

220 | Chapter 9: Troubleshooting

www.it-ebooks.info

http://bit.ly/Netflix_AWS_storm
http://www.it-ebooks.info/

A Mystery Bottleneck
A cluster of a few hundred nodes running HDFS and MapReduce, responsible for
streaming data ingest of all user activity from various web applications, presented with
“intermittent slow HDFS write rates.” Most streams would write “fast” (later learned
to be at a rate greater than 50MB per second), but occasionally, the write rate would
drop for some but not all streams to less than 5MB per second. All nodes were connected
via a near-line rate, nonblocking 1GbE network, with each 48-port top-of-rack switch
connected to a core via four trunked 10GbE fibre links for a mild over-subscription rate
of 1.2. Commonly used in large clusters, the core switch in use theoretically supported
the necessary fabric bandwidth to not be a bottleneck. Each host in the cluster con-
tained 8 JBOD-configured, 2TB SATA II drives, connected via a single SAS controller
to a standard dual-socket motherboard sporting 48GB of memory.

What was interesting about the problem was the intermittent nature of the degraded
write performance. This was a new cluster, which always brings a fair amount of sus-
picion, mostly because there’s no existing data with which to compare. However, the
hardware itself was a known quantity and the intermittent nature immediately sug-
gested an outlier somewhere in the network. Discussing the problem with the cluster
administrator, it was revealed that it wasn’t actually that an entire HDFS write
stream would be slow, but that within a write, the speed would appear to drop for a
short period of time and then resolve itself. At a high level, it immediately sounded like
a network problem, but where and why were the open questions.

Larger organizations, at which system and network administrators are in two separate
groups, tend to suffer from an us and them problem, each claiming that various ephem-
eral issues are the fault of the other. Network administrators view the network as a
service, happy to remain ignorant of the content of the packets that fly back and forth,
and systems folks assuming that the network is a given. Things are further complicated
by the opacity of the network. It’s not always clear what the physical topology is, or
what’s shared versus dedicated bandwidth. Without a view of the network from the
switch, it’s impossible to see what the overall traffic pattern looks like, so black box
−style testing is usually necessary.

Once the hardware, configuration, and cluster history information was available, a list
of possible problems was made. Obviously some kind of network issue could be causing
this kind of behavior. It could be a global network problem in which all traffic was
affected, possibly due to dropped packets and retransmission. Of course, this seemed
unlikely, given the aggregate traffic that the cluster was handling with the given equip-
ment. This could really be the case only if the core switch were shared with some other,
extremely spiky application, and even then, the drop in transfer rate seemed to affect
only some streams. It could be that it was local to a single top-of-rack switch. That
would account for why only some streams were affected. We’d need to know more
about which datanodes were involved to say whether it was contained on a single rack
or if it spanned the whole network. As much as the network was possible, it could be

War Stories | 221

www.it-ebooks.info

http://www.it-ebooks.info/

a problem with a specific group of datanodes on the host side. A group of datanodes
could be misconfigured somehow, causing any write that included one or more of those
nodes in the replication pipeline to be affected. The rule around network partitions—
that a machine failure and a network failure are indistinguishable from one another
when it comes to message loss—could easily be generalized to a situation such as this,
in which a pattern of failure could be a switch or a group of machines, and that a slow
machine is the same as a slow segment of the network (where the segment could be a
small as a single port). Either way, it seemed like the pattern was key. If we could find
when and where the degraded performance occurred, only then would it even be pos-
sible to find out why.

Unfortunately, there was no per-host network monitoring in place, so it wasn’t a simple
matter of looking at the distribution of traffic to machines. Even if it was available, it’s
still difficult to distinguish artificially limited traffic from an underutilized machine in
the cluster. Luckily, the issue was easy to observe and replicate. The cluster adminis-
trator pointed out that he could perform an HDFS transfer with the command hadoop
-put some_file.log /user/joe and with some luck, hit the issue. Using the output of
the hadoop fsck command, it’s possible to find all hosts involved in an HDFS write
operation, which would be critical. Remember from Chapter 2 that when clients write
to HDFS, a replication pipeline is formed for each block. This means that a different
set of datanodes is selected for each block written to HDFS, which would easily explain
the intermittent nature of the problem. Together, we constructed a test to help us find
the pattern, shown in Example 9-1; we would run the command in a loop, writing to
numbered files in HDFS, timing each iteration of the command, as there was a notice-
able difference in speed when the issue occurred. Note that we were interested in the
results for all commands rather than just slow commands, because if a node appeared
in both a slow and a normal speed write, that would show us that it probably wasn’t a
problem on that machine, or that the problem wasn’t a specific machine, but possibly
a component within a machine, such as a single disk. If we looked at just the hosts
involved in the slow iterations, we might incorrectly focus on a machine. It was also
entirely possible that there would be no pattern here and the problem wasn’t related
to a specific machine (but I admit I was pretty convinced).

To simplify the test, we used a file that was just under the block size. This meant there
was a single block per file and a single triplet of datanodes as a result.

Example 9-1. Test script used to generate HDFS traffic

#!/bin/sh

opt_source_file="$1"
opt_dest="$2"
opt_iterations="$3"

[-f "$opt_source_file"] || {
 echo "Error: source file not provided or doesn't exist: $opt_source_file"
 exit 1
}

222 | Chapter 9: Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

[-n "$opt_dest"] || {
 echo "Error: destination path not provided"
 exit 2
}

[-n "$opt_iterations"] || {
 echo "Error: number of iterations not provided"
 exit 3
}

filename=$(basename $opt_source_file)
i=0

while ["$i" -lt "$opt_iterations"] ; do
 echo "Writing $opt_dest/$filename.$i"
 time hadoop fs -put "$opt_source_file" "$opt_dest/$filename.$i"
 i=$(($i + 1))
done

We ran our test, writing the output to a file for later reference. The next step was to
build a list of which datanodes participated in each replication pipeline. The informa-
tion we used was produced by the hadoop fsck utility. The output from this specific
incident isn’t available, but Example 9-2 gives you an idea of how the output can be
used for this purpose. Note the options passed to the command and the full listing of
each block and the three datanodes on which a replica resides.

Example 9-2. HDFS fsck output displaying block locations per file

[esammer@hadoop01 ~]$ hadoop fsck /user/esammer -files -blocks -locations
FSCK started by hdfs (auth:SIMPLE) from /10.0.0.191 for path ↵
 /user/esammer at Mon Jul 09 15:35:41 PDT 2012
/user/esammer <dir>
...
/user/esammer/1tb/part-00004 10995116200 bytes, 1 block(s): OK
0. BP-875753299-10.1.1.132-1340735471649:blk_6272257110614848973_83827 ↵
 len=134217728 repl=3 [10.1.1.134:50010, 10.1.1.135:50010, 10.1.1.139:50010]
...

The fsck output was parsed, and the list of datanodes for each single-block file was
sorted to make comparisons simpler, as in Example 9-3.

Example 9-3. Parsed fsck output with sorted datanodes

/user/esammer/1tb/part-00004 10.1.1.134:50010 10.1.1.135:50010 10.1.1.139:50010
/user/esammer/1tb/part-00005 10.1.1.135:50010 10.1.1.137:50010 10.1.1.140:50010
/user/esammer/1tb/part-00006 10.1.1.131:50010 10.1.1.133:50010 10.1.1.134:50010
...

Performing some basic counts of which datanodes were involved in slow files versus
fast files, it became obvious that a single datanode was present in all slow writes and
no normal speed writes. Direct scp file copies to the other two machines that appeared
with the problematic host in each instance also ran at an expected rate, while the host

War Stories | 223

www.it-ebooks.info

http://www.it-ebooks.info/

in question was significantly slower. Using scp and bypassing Hadoop altogether elim-
inated it as a potential contributor to the problem. It was clearly the single host that
was the issue.

All host-level checks looked normal. Resource consumption, hardware, and software
health all looked normal on the host. Eventually, we convinced the network team to
take one last look at the switch to which the host was connected. As it turned out, either
a human being or a bad cable (we never got an answer) had caused the single switch
port to negotiate at 100Mb, rather than 1Gb—a simple problem to fix.

This was a situation in which a lot of lessons were learned, and there was obviously
room for improvement. Here are some of the take-aways this particular company had,
as a result:

• Always assume that the problem is yours. If each group had made such an as-
sumption and spent a few extra minutes when performing initial troubleshooting,
this problem would have been caught much, much sooner. Specifically, when the
networking group confirmed that there was no issue, they checked only a subset
of the total number of ports that made up the cluster, missing the misconfigured
port. The same may have also been true on the host side of the link (we never
actually saw this).

• Hadoop is, as promised, really good at covering up odd degradations in hardware
performance. The problem went unnoticed for some time before it was clear that
it was even an issue.

• Implement comprehensive monitoring. Having all monitoring in place, and under
a single pane of glass, would have saved quite a bit of time writing ad hoc scripts
to locate the problem.

There’s No Place Like 127.0.0.1
Mike (not his real name) was tasked with setting up a new Hadoop cluster. He used
the standard golden CentOS image used for all other machines in the data center as a
base from which to start, installed the software, and configured Hadoop as he had done
before. Starting with HDFS, he formatted the namenode and proceeded to fire up the
namenode daemon. As expected, the web user interface immediately responded, show-
ing zero datanodes in the cluster. Next, he started a datanode process on the same
machine that, within a few seconds, showed up in the user interface. Everything looked
like it was on track.

224 | Chapter 9: Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

The next step was to start each datanode, in turn, checking that the total available
HDFS capacity grew with each new node that connected. At this point, some strange
behavior was observed. No other datanodes seemed to be able to connect to the name-
node. Mike started making a list of things that could cause this result:

• It’s possible that the machine running the namenode was running a firewall that
prevented other hosts from connecting to it. This firewall would explain why the
local datanode could connect but no other process could.

• It’s possible that the namenode was binding to the wrong IP address. We know
that the namenode uses the value of fs.default.name is used to decide which IP to
bind to. This case seemed unlikely because Mike used the correct hostname by
which the machine should be addressed. (In our examples, we’ll use es-op-n1 as
the namenode and es-op-n2 as a separate worker machine.)

• The datanodes may have received incorrect configuration in fs.default.name, in-
structing them to communicate with the wrong machine. This case was even more
unlikely because the same configuration files were deployed to all nodes.

• Some network problem could have partitioned the namenode from the rest of the
new workers. This possibility was easily rejected out of the gate because Mike was
able to make ssh connections from one machine to the other.

• The dfs.hosts and dfs.hosts.exclude lists could have been denying datanode reg-
istration. Again, this option was easily rejected because these files had not yet been
configured and the default behavior of the namenode is to allow all datanodes to
connect.

It was common for new CentOS images to have a default set of firewall rules configured,
which seemed possible. Additionally, it was trivial to verify it, so Mike decided to knock
it off the list right away:

[root@es-op-n1 ~]# iptables -nvL
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
 34 2504 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED
 0 0 ACCEPT icmp -- * * 0.0.0.0/0 0.0.0.0/0
 1 382 ACCEPT all -- lo * 0.0.0.0/0 0.0.0.0/0
 0 0 ACCEPT tcp -- * * 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:22
 4 240 REJECT all -- * * 0.0.0.0/0 0.0.0.0/0 reject-with
 icmp-host-prohibited

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination
 0 0 REJECT all -- * * 0.0.0.0/0 0.0.0.0/0 reject-with
 icmp-host-prohibited

Chain OUTPUT (policy ACCEPT 24 packets, 2618 bytes)
 pkts bytes target prot opt in out source destination

Sure enough, the standard set of rules allowing only established and related connec-
tions, ICMP, loopback device, and SSH traffic were permitted. All other traffic was

War Stories | 225

www.it-ebooks.info

http://www.it-ebooks.info/

being rejected. Also, the packet counter column for the REJECT rule clearly showed
that it was increasing at a steady rate. Without even checking the logs, Mike knew this
wouldn’t work. He decided to temporarily disable iptables while working on the new
configuration:

[root@es-op-n1 ~]# /etc/init.d/iptables stop
iptables: Flushing firewall rules: [OK]
iptables: Setting chains to policy ACCEPT: filter [OK]
iptables: Unloading modules: [OK]
[root@es-op-n1 conf]# iptables -nvL
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source destination

With that issue resolved, the user interface was checked again. After checking the da-
tanode processes’ logs and confirming that they were still alive and retrying, Mike
checked the namenode user interface again. Still, though, no new datanodes connected.
It was obvious that this would have been a problem, but it wasn’t actually the sole issue.
Something was still wrong, so Mike moved on to the next possibility in the list: binding
to the wrong IP address. Again, this possibility was also easy to check using the net
stat command:

root@es-op-n1 ~]# netstat -nlp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:8020 0.0.0.0:* LISTEN 5611/java
tcp 0 0 0.0.0.0:50070 0.0.0.0:* LISTEN 5611/java
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 4848/sshd
...

Process id 5611 had the two ports open he expected—the namenode RPC port (8020)
and the web user interface (50070)—however, the RPC port was listening only on the
loopback IP address 127.0.0.1. That was definitely going to be a problem. If the host-
name specified by fs.default.name was, in fact, the proper hostname to use—after all,
Mike had used it when creating an SSH connection to the machine—why was this
happening? As a first step, Mike checked on what the machine thought its hostname
was:

[root@es-op-n1 ~]# hostname
es-op-n1

Not the fully qualified name, but that should work just fine. Next, he checked what
the data center DNS had to say about the hostname:

[root@es-op-n1 ~]# host -t A -v es-op-n1
Trying "es-op-n1.xyz.com"
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36912
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

226 | Chapter 9: Troubleshooting

www.it-ebooks.info

http://www.it-ebooks.info/

;; QUESTION SECTION:
;es-op-n1.xyz.com. IN A

;; ANSWER SECTION:
es-op-n1.xyz.com. 0 IN A 10.20.194.222

Received 60 bytes from 10.20.76.73#53 in 0 ms

According to DNS, es-op-n1 lived at 10.20.194.222, which was correct. It was possible
that something in /etc/hosts (which normally appears before DNS in the list of sources
of name resolution) was to blame:

[root@es-op-n1 ~]# cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 es-op-n1

Aha! The name es-op-n1 was listed as an alias for localhost, which resolves to 127.0.0.1.
That could easily cause the issue. Mike fixed this, after some grumbling about why
anyone would configure a machine this way, restarted the namenode process, and
checked netstat again:

[root@es-op-n1 ~]# netstat -nlp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 10.20.194.222:8020 0.0.0.0:* LISTEN 6282/java
tcp 0 0 0.0.0.0:50070 0.0.0.0:* LISTEN 6282/java
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 4848/sshd
...

Everything was looking much better now. Checking the namenode web user interface
revealed two datanodes connected, which made sense: one from the local machine and
the first worker that had been retrying all along. Just to make sure, Mike started copying
some files into HDFS to confirm that everything worked properly before moving on:

[root@es-op-n1 ~]# sudo -u hdfs hadoop fs -put /etc/hosts /hosts1
[root@es-op-n1 ~]# sudo -u hdfs hadoop fs -put /etc/hosts /hosts2
[root@es-op-n1 ~]# sudo -u hdfs hadoop fs -put /etc/hosts /hosts3
[root@es-op-n1 ~]# sudo -u hdfs hadoop fs -ls /
Found 3 items
-rw-r--r-- 3 hdfs supergroup 158 2012-07-10 15:17 /hosts1
-rw-r--r-- 3 hdfs supergroup 158 2012-07-10 15:18 /hosts2
-rw-r--r-- 3 hdfs supergroup 158 2012-07-10 15:18 /hosts3
[root@es-op-n1 ~]# sudo -u hdfs hadoop fs -rm /hosts*
Deleted /hosts1
Deleted /hosts2
Deleted /hosts3

Once again, everything appeared to be working, and Mike was happy.

War Stories | 227

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Monitoring

An Overview
It’s hard to talk about building large shared, mission-critical systems without having a
way to know their operational state and performance metrics. Most organizations (I
hope) have some form of monitoring system that keeps track of various systems that
occupy the data center. No one runs a large Hadoop cluster by itself, and while a lot
of time is spent on data integration, monitoring integration sometimes falls by the
wayside.

Most monitoring systems can be divided into two major components: metric collection
and consumption of the resultant data. Hadoop is another source from which metrics
should be collected. Consumption of the data can mean presenting aggregate metrics
as dashboards, raw metrics as time series data for diagnoses and analysis, and very
commonly, rule evaluation for alerting. In fact, many monitoring systems provide more
than one of these features. It helps to further divide monitoring into two distinct types:
health monitoring, where the goal is to determine that a service is in an expected op-
erational state, and performance monitoring, where the goal is to use regular samples
of performance metrics, over time, to gain a better understanding of how the system
functions. Performance monitoring tends to be harder to cover outside of the context
of a specific environment and set of workloads, so instead we’ll focus primarily on
health monitoring.

Hadoop, like most distributed systems, constitutes a monitoring challenge because the
monitoring system must know about how the multiple services interact as a larger
system. When monitoring HDFS, for example, we may want to see each daemon run-
ning, within normal memory consumption limits, responding to RPC requests in a
defined window, and other “simple” metrics, but this doesn’t tell us whether the en-
tirety of the service is functional (although one may infer such things). Instead, it can
be necessary to know that a certain percentage of datanodes are alive and communi-
cating with the namenode, or what the block distribution is across the cluster to truly
know the state of the system. Zooming in too close on a single daemon or host, or too

229

www.it-ebooks.info

http://www.it-ebooks.info/

far out on the cluster, can both be equally deceptive when trying to get a complete
picture of performance or health of a service like HDFS.

Worse still, we want to know how MapReduce is performing on top of HDFS. Alert
thresholds and performance data of MapReduce is inherently coupled to that of HDFS
when services are stacked in this manner, making it difficult to detect the root cause of
a failure across service and host boundaries. Existing tools are very good at identifying
problems within localized systems (those with little to no external dependency) but
require quite a bit of effort to understand the intricacies of distributed systems. These
complexities make the difference between a daemon being up and responding to basic
checks and whether it is safe to walk away from a computer (or go to sleep) difficult to
ascertain.

In the following sections, we’ll cover what Hadoop metrics are, how to configure them,
and some common ways to integrate with existing monitoring services and custom
code.

Hadoop Metrics
Hadoop has built-in support for exposing various metrics to outside systems. Each
daemon can be configured to collect this data from its internal components at a regular
interval and then handle the metrics in some way using a plug-in. A number of these
plug-ins ship with Hadoop, ready for use in common deployment scenarios (more on
that later). Related metrics are grouped into a named context, and each context can be
treated independently. Some contexts are common to all daemons, such as the infor-
mation about the JVM and RPC operations performed, and others apply only to dae-
mons of a specific service, such as HDFS metrics that come from only the namenode
and datanodes. In most cases, administrators find that all contexts are useful and nec-
essary when monitoring for health, understanding performance, and diagnosing prob-
lems with a cluster.

The metrics system has evolved over time, gaining features and improvements along
the way. In April 2010, a project1 was started to refactor the metrics subsystem to
support features that had been too difficult to provide under the existing implementa-
tion. Notably, the new metrics subsystem (referred to as metrics2) supports sending
metrics to multiple plug-ins, filtering of metrics in various ways, and more complete
support for JMX. Work was completed in mid to late 2011 and included in Apache
Hadoop 0.20.205 and CDH4 and later. Earlier versions of Apache Hadoop and CDH
use the original metrics implementation. For the sake of clarity, we’ll refer to the old
metrics system as metrics1 when discussing the specific implementation and use the
more general term metrics to refer to the functionality of either version.

1. See Apache Hadoop JIRA HADOOP-6728.

230 | Chapter 10: Monitoring

www.it-ebooks.info

https://issues.apache.org/jira/browse/HADOOP-6728
http://www.it-ebooks.info/

Apache Hadoop 0.20.0 and CDH3 (metrics1)
The original implementation of the metrics system groups related metrics into contexts,
as described earlier. Each context can be individually configured with a plug-in that
specifies how metric data should be handled. A number of plug-ins exist including the
default NullContext, which simply discards all metrics received. Internal components
of the daemon are polled at a regular, user-defined interval, with the resulting data
being handled by the configured plug-in. The primary four contexts are:

jvm
Contains Java virtual machine information and metrics. Example data includes the
maximum heap size, occupied heap, and average time spent in garbage collection.
All daemons produce metrics for this context.

dfs
Contains HDFS metrics. The metrics provided vary by daemon role. For example,
the namenode provides information about total HDFS capacity, consumed ca-
pacity, missing and under-replicated blocks, and active datanodes in the cluster,
and datanodes provide the number of failed disk volumes and remaining capacity
on that particular worker node. Only the HDFS daemons output metrics for this
context.

mapred
Contains MapReduce metrics. The metrics provided vary by daemon role. For
example, the jobtracker provides information about the total number of map and
reduce slots, blacklisted tasktrackers, and failures, whereas tasktrackers provide
counts of running, failed, and killed tasks at the worker node level. Only MapRe-
duce daemons output metrics for this context.

rpc
Contains remote procedure call metrics. Example data includes the time each RPC
spends in the queue before being processed, the average time it takes to process an
RPC, and the number of open connections. All daemons output metrics for this
context.

Metric plug-in class names tend to reuse the word context―but to mean
something other than the context described thus far. When we refer to
context, we mean one of the four groups of metrics. We’ll use the term
metric plugin to refer to the class that can be configured to handle
metrics.

Although all of Hadoop is instrumented to capture this information, it’s not available
to external systems by default. One must configure a plug-in for each context to handle
this data in some way. The metrics system configuration is specified by the hadoop-
metrics.properties file within the standard Hadoop configuration directory. The con-
figuration file is a simple Java properties format file and is largely self-explanatory,

Hadoop Metrics | 231

www.it-ebooks.info

http://www.it-ebooks.info/

although a few examples are provided in this chapter. The following metric plug-ins
are included with Hadoop:

org.apache.hadoop.metrics.spi.NullContext
Hadoop’s default metric plug-in for all four contexts, NullContext is the /dev/null
of plug-ins. Metrics are not collected from the internal components, nor are they
output to any external system. This plug-in effectively disables access to metrics,
as shown in Example 10-1.

Example 10-1. Using NullContext to disable metric collection

hadoop-metrics.properties

jvm.class = org.apache.hadoop.metrics.spi.NullContext

dfs.class = org.apache.hadoop.metrics.spi.NullContext

...

org.apache.hadoop.metrics.spi.NoEmitMetricsContext
The NoEmitMetricsContext is a slight variation on NullContext—with an important
difference. Although metrics are still not output to an external system, the thread
that runs within Hadoop, updating the metric values in memory does run. Systems
such as JMX and the metrics servlet (described later) rely on this information being
collected and available to function.2 There’s almost no reason not to enable this
plug-in for all contexts, for all clusters. The added insight into the system is sig-
nificant and well worth the minimal overhead introduced. Additionally, updating
the metric configuration requires a daemon restart, which can temporarily disrupt
service down the road. The only parameter that NoEmitMetricsContext supports is
period, which defines the frequency at which collection occurs. See Exam-
ple 10-2 for an example of a configuration using NoEmitMetricsContext.

Example 10-2. Using NoEmitMetricsContext for metrics collection

hadoop-metrics.properties

jvm.class = org.apache.hadoop.metrics.spi.NoEmitMetricsContext
jvm.period = 10

dfs.class = org.apache.hadoop.metrics.spi.NoEmitMetricsContext
dfs.period = 10

...

org.apache.hadoop.metrics.file.FileContext
FileContext polls the internal components of Hadoop for metrics periodically and
writes them out to a file on the local filesystem. Two parameters are available (see

2. More specifically, JMX will always be able to access the standard JVM instrumented components, but
this is different from the jvm context provided by Hadoop metrics.

232 | Chapter 10: Monitoring

www.it-ebooks.info

http://www.it-ebooks.info/

Example 10-3) to the control the filename to write to (fileName) and the desired
frequency of updates (period) in seconds.

Example 10-3. Using FileContext for metrics collection

hadoop-metrics.properties

jvm.class = org.apache.hadoop.metrics.file.FileContext
jvm.period = 10
jvm.fileName = /tmp/jvm-metrics.log

dfs.class = org.apache.hadoop.metrics.file.FileContext
dfs.period = 10
dfs.fileName = /tmp/dfs-metrics.log

...

Practically speaking, FileContext is flawed and shouldn’t be used in production
clusters because the plug-in never rotates the specified file, leading to indefinite
growth. Truncating the file doesn’t work because the JVM will continue to write
to the open file descriptor until the daemon is restarted. During that period of time,
disk space on the local filesystem will continue to evaporate and it won’t be im-
mediately clear as to why (the classic anonymous file situation). The other major
problem is that a unique file name must be given for each context and when mul-
tiple daemons live on the same machine (such as worker nodes), additionally across
daemons. This setup is a pain to manage; as an alternative, consider using NoEmit
MetricsContext and the metrics servlet, or Hadoop’s JMX support.

org.apache.hadoop.metrics.ganglia.GangliaContext and org.apache.hadoop.met
rics.ganglia.GangliaContext31

Hadoop includes first-class support for integrating with the popular open source
performance monitoring system Ganglia. Ganglia was built by a group at the Uni-
versity of California, Berkeley, specifically to collect, aggregate, and plot a large
number of metrics from large clusters of machines. Because of its ability to scale,
Ganglia is a fantastic system to use with Hadoop. It works by running a small
monitoring daemon on each host called gmond that collects metrics locally. Each
gmond process relays data to a central gmetad process that records data in a series of
RRD, or round-robin database files, which are fixed-size files that efficiently store
time series data. A PHP web application displays this data in a simple but effective
view.

The GangliaContext is normally configured, as in Example 10-4, to send metrics to
the local gmond process using the servers property in hadoop-metrics.properties.
Like FileContext and NoEmitMetricsContext, a period parameter specifies how fre-
quently data is collected.

Hadoop Metrics | 233

www.it-ebooks.info

http://ganglia.sourceforge.net/
http://oss.oetiker.ch/rrdtool/
http://www.it-ebooks.info/

Example 10-4. Using GangliaContext for metrics collection

hadoop-metrics.properties

jvm.class = org.apache.hadoop.metrics.file.FileContext
jvm.period = 10
jvm.servers = 10.0.0.191
The server value may be a comma separated list of host:port pairs.
The port is optional, in which case it defaults to 8649.
jvm.servers = gmond-host-a, gmond-host-b:8649

dfs.class = org.apache.hadoop.metrics.file.FileContext
dfs.period = 10
dfs.servers = 10.0.0.191

...

The difference between GangliaContext and GangliaContext31 is that the former
works with Ganglia 3.0 and older and the latter supports versions 3.1 and newer.
For more information about installing and configuring Ganglia, see the project
website.

JMX Support

Because Hadoop is a Java-based system, supporting JMX is a relatively simple decision
to make from a development perspective. Some monitoring systems, notably those
written in Java themselves, even have first-class support for JMX. JMX is nice because
it supports self-describing endpoints that enable monitoring systems (or any JMX cli-
ent) to discover the available MBeans and their attributes (which would be analogous
JMX-speak for a context and its metrics). JMX terminology, its RPC stack, security,
and configuration, however, are tricky at best and downright convoluted the rest of the
time. Nevertheless, if you know it, or already have a monitoring system that is natively
JMX-aware, it’s a perfectly valid option for integration.

JMX functionality is related to the metric plug-ins in a slightly unusual way. Internal
MBeans in Hadoop rely on a metric plug-in that has an update thread running to collect
data from the system. With the default NullContext plug-in, for instance, although it’s
possible to connect a JMX client to any of the Hadoop daemons and see a list of MBeans
(see Table 10-1), their attributes will never update, which can be confusing and difficult
to debug. Enabling any of the metric plug-ins that have an update thread (NoEmitMe
tricsContext, GangliaContext) will cause MBeans to show the correct information, as
you would normally expect.

234 | Chapter 10: Monitoring

www.it-ebooks.info

http://ganglia.sourceforge.net
http://ganglia.sourceforge.net
http://bit.ly/JMX_oracle
http://www.it-ebooks.info/

Table 10-1. Hadoop-supported JMX MBeans

MBean Object Name Description Daemon

hadoop:service=NameNode,name=FSName-
systemState

Namenode metadata information. Namenode

hadoop:service=NameNode,name=NameNo-
deActivity

Activity statistics on the namenode. Namenode

hadoop:service=NameNode,name=NameNo-
deInfo

Descriptive namenode information. Namenode

hadoop:service=DataNode,name=DataNo-
deActivity-hostname-port

Activity statistics for the datanode running on
hostname and port.

Datanode

hadoop:service=DataNode,name=DataNo-
deInfo

Descriptive datanode information. Datanode

hadoop:service=DataNode,name=FSDataset-
State-DS-ID-127.0.0.1-port-timestamp

Datanode storage location statistics
(dfs.data.dir) and information.

Datanode

hadoop:service=JobTracker,name=JobTracker-
Info

Descriptive jobtracker information. Jobtracker

hadoop:service=TaskTracker,name=TaskTrack-
erInfo

Descriptive tasktracker information. Tasktracker

hadoop:service=Service
Name,name=RpcActivityForPort1234

RPC information for ServiceName port 1234. All

hadoop:service=Service
Name,name=RpcDetailedActivityForPort1234

Detailed RPC information for ServiceName
port 1234. Tends to not be particularly useful.

All

REST Interface

The other common (and some might argue, slightly more modern) method of getting
at metric data is by way of a single-call REST/ JSON servlet running in each daemon’s
embedded web server. The ubiquity of HTTP-based services, bevy of JSON parsing
libraries, and the simplicity make it an extremely compelling option for many. Down-
sides to using REST/JSON include the lack of standardization and discoverability,
HTTP overhead, and requirement for custom polling code to do something with the
JSON blob returned from the service.

There are actually two such servlets: the original metrics servlet that lives at /metrics
and its updated replacement at /jmx. Both provide similar functionality—an HTTP
GET request that produces a JSON format response—but they work in very different
ways. The /metrics servlet uses the Hadoop metrics system directly, works only with
metrics1, and is available in all versions of CDH3 as well as Apache Hadoop until
version 0.20.203 (where it stops working due to the switch to metrics2). The newer /
jmx servlet, on the other hand, exposes Hadoop’s JMX MBeans as JSON (which, as
you learned earlier, get their information from the metrics system). This servlet is
available in CDH starting with CDH3u1 but does not exist in Apache Hadoop until
version 0.20.205.

Hadoop Metrics | 235

www.it-ebooks.info

http://www.it-ebooks.info/

If a metric plug-in with an update thread is configured, pointing
an HTTP client at the path /metrics will yield a plain-text version of the metric data.
Using the format=json query parameter, one can retrieve the same content in JSON
format:

[esammer@hadoop01:~]$ curl http://hadoop117:50070/metrics
dfs
 FSDirectory
 {hostName=hadoop117,sessionId=}:
 files_deleted=100
 FSNamesystem
 {hostName=hadoop117,sessionId=}:
 BlockCapacity=2097152
 BlocksTotal=9
 CapacityRemainingGB=24
 CapacityTotalGB=31
 CapacityUsedGB=0
 CorruptBlocks=0
 ExcessBlocks=0
 FilesTotal=33
 MissingBlocks=0
 PendingDeletionBlocks=0
 PendingReplicationBlocks=0
 ScheduledReplicationBlocks=0
 TotalLoad=1
 UnderReplicatedBlocks=1
 namenode
 {hostName=vm02.localdomain,sessionId=}:
 AddBlockOps=1
 CreateFileOps=1
 DeleteFileOps=1
 FileInfoOps=12
 FilesAppended=0
...

Adding the query parameter format=json gives us the same information, but in JSON
format:

[esammer@hadoop01:~]$ curl 'http://hadoop117:50070/metrics?format=json'
{"dfs":{
 "FSDirectory":[
 [{"hostName":"hadoop117","sessionId":""},{"files_deleted":100}]
],
 "FSNamesystem":[
 [
 {"hostName":"hadoop117","sessionId":""},
 {"BlockCapacity":2097152,"BlocksTotal":9,"CapacityRemainingGB":24,
 "CapacityTotalGB":31,"CapacityUsedGB":0,"CorruptBlocks":0,"ExcessBlocks":0,
 "FilesTotal":33,"MissingBlocks":0,"PendingDeletionBlocks":0,
 ...

Designed as a replacement to /metrics, the /jmx servlet produces
logically similar output, but the data is sourced from Hadoop’s JMX MBeans instead
of the metrics system directly. This is the preferred servlet going forward, as it works

Using the metrics servlet.

Using the JMX JSON servlet.

236 | Chapter 10: Monitoring

www.it-ebooks.info

http://www.it-ebooks.info/

across both metrics1 and metrics2 based releases. Unlike /metrics, this servlet does not
support text output—only JSON. Its output should be self-explanatory:

[esammer@hadoop01:~]$ curl http://hadoop117:50070/jmx
{
 "name" : "hadoop:service=NameNode,name=NameNodeActivity",
 "modelerType" : "org.apache.hadoop.hdfs.server.namenode.metrics.NameNodeActivtyMBean",
 "AddBlockOps" : 0,
 "fsImageLoadTime" : 2756,
 "FilesRenamed" : 0,
 "SyncsNumOps" : 0,
 "SyncsAvgTime" : 0,
 "SyncsMinTime" : 0,
 "SyncsMaxTime" : 70,
 "JournalTransactionsBatchedInSync" : 0,
 "FileInfoOps" : 0,
 "CreateFileOps" : 0,
 "GetListingOps" : 0,
 "TransactionsNumOps" : 0,
 "TransactionsAvgTime" : 0,
 "TransactionsMinTime" : 0,
 "TransactionsMaxTime" : 1,
 "GetBlockLocations" : 0,
 "BlocksCorrupted" : 0,
 "FilesInGetListingOps" : 0,
 "SafemodeTime" : 40117,
 "FilesCreated" : 0,
 "FilesAppended" : 0,
 "DeleteFileOps" : 0,
 "blockReportNumOps" : 0,
 "blockReportAvgTime" : 0,
 "blockReportMinTime" : 0,
 "blockReportMaxTime" : 3
}, {
 "name" : "java.lang:type=Threading",
 "modelerType" : "sun.management.ThreadImpl",
 "ThreadContentionMonitoringEnabled" : false,
 "DaemonThreadCount" : 29,
 "PeakThreadCount" : 38,
 "CurrentThreadCpuTimeSupported" : true,
 "ObjectMonitorUsageSupported" : true,
 "SynchronizerUsageSupported" : true,
 "ThreadContentionMonitoringSupported" : true,
 "ThreadCpuTimeEnabled" : true,
 ...

Apache Hadoop 0.20.203 and Later, and CDH4 (metrics2)
Starting with Apache Hadoop 0.20.203, the new metrics2 system is included and must
be used. From the perspective of an administrator, the most noteworthy change is the
method of configuration and some of the nomenclature. Many of the concepts and
functionality of metrics1 are preserved, albeit in a more general capacity.

Hadoop Metrics | 237

www.it-ebooks.info

http://www.it-ebooks.info/

One of the primary drawbacks of metrics1 was the one-to-one relationship of context
to plug-in. Supporting a more generic system where metrics could be handled by mul-
tiple plug-ins was necessary. In metrics2, we refer to metrics sources and sinks. The
former are components that generate metrics; the latter consume them. The terms are
analogous to the relationship between a context and its configured plug-in in the older
metrics1 system. Components of Hadoop that wish to produce metrics implement the
MetricsSource interface or use a set of simple Java annotations; those that wish to
receive and process metric data implement the MericsSink interface. The framework,
based on the administrator-provided configuration, handles getting the metrics from
sources to sinks.

By default, all metrics from all sources are delivered to all sinks. This is the desired
behavior in most cases—to deliver all metrics to a single file, or to Ganglia, for example.
When more elaborate routing of data is required, one can filter metrics by the context
to which they belong, as well as other so-called tags. Filters can be applied to a source,
record, or even metric name. Note that the more specific the filter, the greater the
overhead incurred during metric processing, as you might expect.

System configuration is done by way of the hadoop-metrics2.properties (note the subtle
number 2 in the name) file in the standard Hadoop configuration directory. Like its
predecessor, hadoop-metrics2.properties is a Java properties file, but it uses a few special
conventions to express defaults and overrides. In Example 10-5, a simple metrics2
configuration file is shown.

Example 10-5. Sample hadoop-metrics2.properties configuration file

hadoop-metrics2.properties

By default, send metrics from all sources to the sink
named 'file', using the implementation class FileSink.
*.sink.file.class = org.apache.hadoop.metrics2.sink.FileSink

Override the parameter 'filename' in 'file' for the namenode.
namenode.sink.file.filename = namenode-metrics.log

Send the jobtracker metrics into a separate file.
jobtracker.sink.file.filename = jobtracker-metrics.log

Each property name in the configuration file has four components: prefix, type, in-
stance, and option, in that order. For instance, in the property namenode.sink.file.file-
name, namenode is the prefix, sink is the type, file is the instance, and filename is the
option. These components can be replaced by an asterisk (*) to indicate that an option
should act as a default. For more information on the advanced features of metrics2, see
the Javadoc.

238 | Chapter 10: Monitoring

www.it-ebooks.info

http://bit.ly/javadoc_packagesummary
http://www.it-ebooks.info/

What about SNMP?
Most system administrators have encountered the Simple Network Management Pro-
tocol (or SNMP) at one time or another. SNMP, like JMX, is a standard for extracting
metrics from a service or device and is supported by many, if not all, monitoring sys-
tems. If JMX could be called cryptic, SNMP borders on alien, with equally obtuse
terminology and a long history of security issues (this is theoretically resolved with
SNMPv3, but it’s still exceedingly complicated). Hadoop has no direct SNMP support
and no defined MIB module. Users are encouraged to use JMX, as it offers similar
functionality and industry adoption, if they’d rather not write custom code to interface
with the JSON servlet.

Health Monitoring
Once Hadoop is properly configured and integrated with your monitoring system of
choice, the next step is to decide which metrics are important and which aren’t. Even
more so, the question of which metrics most accurately represent the health of a given
service is the critical question. Because there are dependencies between services, it
usually makes sense to model this relationship in the monitoring system to quell spu-
rious alerts. For instance, if HDFS isn’t available, it probably doesn’t make sense to
ring the alarm for MapReduce. There are, however, a handful of metrics for each service
that act as the canary in the coal mine, so to speak.

Metric selection is only half the battle when configuring monitoring systems. Equally
important are the thresholds we establish to indicate alert conditions. The problem
with monitoring in general is that on any active system, as soon as a measurement is
taken, it is immediately outdated. Assume for a minute that a host check reveals that
the disk containing the namenode metadata is 93% full. It’s unclear whether this is
alert worthy because on a 1TB disk, this means that almost 72GB is still available.
Knowing the total size of the disk is necessary, but it doesn’t reveal the full story because
we still don’t know the rate of growth. If disk space is consumed at a rate of 1GB per
day on average, 72GB is more than sufficient and shouldn’t yield an alert. Always re-
member that the rate of growth must also factor in the rate of attrition of old data,
which in some cases can be independently controlled. Aggressive log pruning is a good
example of compensating for resource consumption by reducing the retention rate of
other data that may exist on the same device.

So what does all of this mean when establishing alert thresholds? Here are some basic
rules:

• All thresholds are fluid. As cluster usage and resource consumption changes, so
too should alert thresholds.

• For new clusters, start with a conservative value for a threshold, measure usage,
and refine over time. Remember that utilization patterns can occur at different
intervals. For example, it’s not uncommon to have a significant bump in activity

Health Monitoring | 239

www.it-ebooks.info

http://www.it-ebooks.info/

for clusters primarily used for analytics during office hours, at the end of the month,
the end of the quarter, and the end of the year.

• A high signal-to-noise ratio for alerts is absolutely critical. Overly sensitive alerting
will desensitize an operations team to the criticality of the event, and it fatigues
staff.

Host-Level Checks
The host on which the various daemons run must have the requisite local disk capacity,
free memory, and minimal amount of CPU capacity. Some services require significant
(read: as much as possible) network bandwidth; others are far more sensitive to latency.
Here, we’ll focus on what checks should be in place on any Hadoop cluster.

Most Hadoop daemons use the local disk in one way or another. Historically, many of
the daemons have not taken kindly to exhausting the available storage resources on a
host. In the case of the namenode, for instance, it was trivial to accidentally corrupt the
metadata by filling the disk on which the edit log was stored until recent versions (which
admittedly only reduce the chance, not eliminate the possibility). Although the level of
maturity of the software has increased over time, better still is to not test such scenarios.

Recommendation: Monitor local disk consumption of the namenode metadata
(dfs.name.dir) and log data (HADOOP_LOG_DIR) directories. To estimate the immediate
rate of growth, use a 14-day rolling average and alert when the remaining capacity is
below 5 to 30 days’ capacity, depending on how long it normally takes you to mitigate
the situation. The low end of five days is recommended to provide enough overlap for
long weekends.

Datanode (dfs.data.dir) directories differ from most others in that they exist to per-
manently store huge amounts of data. When a datanode directory fills to capacity, it
stops receiving new blocks. If all datanode directories become full, the namenode will
stop placing blocks on that datanode, effectively treating it as read-only. Remember
that if you choose to colocate MapReduce local data and datanode data on the same
devices, you should properly configure dfs.datanode.du.reserved to ensure capacity
remains for task temporary data (see dfs.datanode.du.reserved on page 96 for more
information). MapReduce local (mapred.local.dir) directories have spiky usage pat-
terns, and as a result, their capacity can be difficult to monitor in a meaningful way.
All data in these directories is transient and will be cleaned up when no longer needed
by running jobs, whether they succeed or fail. Should all volumes supporting
mapred.local.dir become invalid due to capacity exhaustion or disk failures, the task-
tracker becomes unusable by the system. Any tasks assigned to that node will inevitably
fail and the tasktracker will eventually be blacklisted by the jobtracker.

Recommendation: Monitor dfs.data.dir and mapred.local.dir directories’ volumes
SMART errors and capacity, but avoid alerting at this level, if possible. Instead, opt for
higher-level checks on the aggregate HDFS and MapReduce service level metrics for

240 | Chapter 10: Monitoring

www.it-ebooks.info

http://en.wikipedia.org/wiki/S.M.A.R.T.
http://www.it-ebooks.info/

alerts, and warnings for individual hosts and disks. To put it another way, a disk failure
in a worker node is not something that an administrator should wake up for unless it
has an impact on the larger service.

Physical and virtual memory utilization are of concern when evaluating the health of a
host in a cluster. Each daemon’s maximum heap allocation (roughly) defines its worst-
case memory footprint. During configuration, the sum of the memory consumption of
all daemons should never exceed physical memory. Provided that this is true, and
there’s nothing else running on the hosts in a Hadoop cluster, these machines should
never swap. Should a host begin swapping, a ripple effect can occur that drastically
decreases performance at best—and causes failures at worst.

Recommendation: Monitor to ensure that the number of pages (or amount of data in
bytes, whatever is easier) swapped in and out to disk, per second, does not exceed zero,
or some very small amount. Note that this is not the same as monitoring the amount
of swap space consumed—a common mistake. The Linux kernel is not obliged to re-
claim swap space previously consumed, until it is needed, even after the data is swapped
back in, so monitoring the utilization of the swap file(s) or partition(s) is almost guar-
anteed to generate false positives.

Processor utilization—specifically, load average—is one of the most frequently mis-
understood metrics that people monitor on hosts. The CPU load average in Linux is
the average number of processes in a runnable state on a machine, over a rolling window
of time. Normally, three discreet values are given: the 5-, 10-, and 15-minute averages.
A contrived, “perfect utilization” example of this would be a 5-minute load average of
1.00 on a single-core CPU, meaning that over the last five minutes, the core was fully
occupied by a running process. Modern server CPUs have between four and eight
physical cores (at the time of this writing) and can support a perfect utilization of a
number greater than 1.00. In other words, you should fully expect, and target, the load
average of a Hadoop worker node to be roughly equal to the number of cores, either
physical, or virtual if you have a feature such as Hyper-Threading enabled. Of course,
it’s rare to achieve such perfection in the real world. The point is to absolutely not set
alert thresholds on load average on a large Hadoop cluster unless you wish to regularly
swim in a sea of false alerts.

Recommendation: Track CPU metrics such as load average for performance and uti-
lization measurement, but do not alert on them unless there’s an unusually compelling
reason (hint: there isn’t).

Network bandwidth consumption is similar to CPU utilization in the context of mon-
itoring. Ideally, this is a metric we track because it tells us something about the behavior
of HDFS data ingress and egress, or running MapReduce jobs, but there’s no prescribed
upper limit at which it makes sense to alert. Latency, on the other hand, can cause some
services to fail outright, which primarily affects HBase, where a region server becoming
even temporarily disconnected from its ZooKeeper quorum can cause it to shut down
and possibly even precipitate a cascading failure, but it’s still a point of concern. The

Health Monitoring | 241

www.it-ebooks.info

http://www.it-ebooks.info/

RPC metrics from the individual daemons provide better insight into the observed
latency, so we measure it there.

Recommendation: Network latency checks are best measured by looking at the total
RPC latency, as reported by the daemons themselves, because that’s what we’re really
interested in. Bandwidth utilization is interesting from a performance perspective and
can help detect (or eliminate) possible bottlenecks (something we’ll look at later).

Arguably, a host-level check of process presence is a common, simple, check performed
to measure health. Unfortunately, the mere presence of a Hadoop process isn’t a reliable
indication that a service is alive or healthy because of the distributed nature of the
system. It’s very possible for a daemon to be alive and running but unable to commu-
nicate with other nodes in the cluster, for whatever reason. The uncertainty of this
method of monitoring, coupled with the fact that Hadoop does provide meaningful
metrics from each daemon, means that process presence checks are probably best
skipped in Hadoop clusters. Skipping them also reduces the amount of potential noise
generated from process-level restarts during maintenance operations, which is a nice
side effect.

Recommendation: Skip process presence checks altogether when monitoring hosts, in-
stead deferring to daemon and service-level metric checks as described later in this
chapter.

All Hadoop Processes
All Hadoop processes are Java processes and as a result, have a common set of checks
that should be performed. One of the most important checks to perform, especially in
the instances of the namenode and jobtracker, is the available heap memory remaining
within the JVM. Using the JMX REST servlet, for example, it’s possible to discover the
initial, maximum, and used heap (Example 10-6). Unfortunately, determining the
health of a process is not as simple as just subtracting the used heap from the max
because of the way garbage collection works. The amount of used memory is always
less than or equal to the committed memory and represents the amount of heap that
actually used by objects. The committed memory is the current size of the heap. That
is, the amount of memory that has been allocated from the operating system and can
be immediately consumed by objects if it is needed. Committed memory is always less
than or equal to the maximum heap size. Should the amount of used memory exceed
(or need to exceed) the amount of committed memory, and the committed memory is
below the max, the amount of committed memory is increased. On the other hand, if
an application attempts to grow its usage beyond the current committed memory, but
the committed memory cannot expand anymore due to the max, the JVM will run out
of memory, resulting in the dreaded OutOfMemoryError.

242 | Chapter 10: Monitoring

www.it-ebooks.info

http://www.it-ebooks.info/

Example 10-6. Sample JVM memory JSON metric data from the namenode

{
 "name" : "java.lang:type=Memory",
 "modelerType" : "sun.management.MemoryImpl",
 "Verbose" : false,
 "HeapMemoryUsage" : {
 "committed" : 1234829312,
 "init" : 1584914432,
 "max" : 7635533824,
 "used" : 419354712
 },
 "NonHeapMemoryUsage" : {
 "committed" : 47841280,
 "init" : 24313856,
 "max" : 136314880,
 "used" : 47586032
 },
 "ObjectPendingFinalizationCount" : 0
 }

It is very common for the amount of used memory to increase over time until it comes
extremely close to the committed or even maximum thresholds and then to immedi-
ately jump back down as the result of a garbage collection event, and it is perfectly
normal. In fact, this is how it is supposed to work. It’s also why monitoring memory
can be difficult.

One option for monitoring a dynamic heap like this is to measure the median used heap
over a set of samples rather than the absolute value at a point in time. If the median
remains high for a period of time (which needs to be long enough for at least one full
garbage collection to occur), it’s probably not going to change and an alert should be
triggered. Alternatively, if you are concerned about false positives and you want to
ensure that a full garbage collection has occurred, there are metrics to expose the num-
ber of full garbage collection events per pool that can be combined with a check of the
median.

Recommendation: Perform heap monitoring on the namenode, jobtracker, and secon-
dary namenode processes using the technique described.

In addition to the amount of memory available, some applications are sensitive to the
duration of garbage collection events. This tends to plague low-latency services, espe-
cially where, because the JVM spends a long time dealing with garbage, it’s unable to
service requests in a timely manner. For an application such as the namenode, this can
be particularly disruptive. Being unable to answer a request for even a couple of seconds
can be the same as not answering it at all. Included in the JVM-level metrics, you will
find metrics for each memory pool that indicate both the number of garbage collection
events as well as the average time each took.

Health Monitoring | 243

www.it-ebooks.info

http://www.it-ebooks.info/

Recommendation: Monitor the average time spent performing garbage collection for
the namenode and jobtracker. Tolerance for these pauses before failure occurs will vary
by application, but almost all will be negatively affected in terms of performance.

HDFS Checks
One of the advantages of HDFS is that the namenode, as a side effect of keeping track
of all datanodes, has an authoritative picture of the state of the cluster. If, for some
reason, the namenode becomes unavailable, it’s impossible to perform any HDFS op-
erations. Whatever the namenode sees is what clients will see when they access the
filesystem. This design saves us the otherwise difficult task of correlating the events
and state information of the datanodes, leaving no room for nondeterminism in health
checks.

Earlier, a general recommendation was made to prefer service-level health and metric
checks. Using the aggregate view from the namenode, we see a more complete picture
of HDFS as a service. Most of the critical health checks performed use the metric data
produced by the namenode. In the following sections, we’ll use the output of the JMX
JSON servlet because of its readability, but you should be able to access this data using
any of the methods described earlier. Within the namenode’s metrics, you will find an
MBean called Hadoop:service=NameNode,name=NameNodeInfo, shown in Example 10-7,
which contains high-level HDFS information.

Example 10-7. Sample NameNodeInfo JSON metric data from the namenode

{
 "name" : "Hadoop:service=NameNode,name=NameNodeInfo",
 "modelerType" : "org.apache.hadoop.hdfs.server.namenode.FSNamesystem",
 "Threads" : 55,
 "Total" : 193868941611008,
 "ClusterId" : "CID-908b11f7-c752-4753-8fbc-3d209b3088ff",
 "BlockPoolId" : "BP-875753299-172.29.121.132-1340735471649",
 "Used" : 50017852084224,
 "Version" : "2.0.0-cdh4.0.0, r5d678f6bb1f2bc49e2287dd69ac41d7232fc9cdc",
 "PercentUsed" : 25.799828,
 "PercentRemaining" : 68.18899,
 "Free" : 132197265809408,
 "Safemode" : "",
 "UpgradeFinalized" : false,
 "NonDfsUsedSpace" : 11653823717376,
 "BlockPoolUsedSpace" : 50017852084224,
 "PercentBlockPoolUsed" : 25.799828,
 "TotalBlocks" : 179218,
 "TotalFiles" : 41219,
 "NumberOfMissingBlocks" : 4725,
 "LiveNodes" : "{
 \"hadoop02.cloudera.com\":{
 \"numBlocks\":40312,
 \"usedSpace\":5589478342656,
 \"lastContact\":2,

244 | Chapter 10: Monitoring

www.it-ebooks.info

http://www.it-ebooks.info/

 \"capacity\":21540992634880,
 \"nonDfsUsedSpace\":1287876358144,
 \"adminState\":\"In Service\"
 },
 ...
 "DeadNodes" : "{}",
 "DecomNodes" : "{}",
 "NameDirStatuses" : "{
 \"failed\":{},
 \"active\":{
 \"/data/2/hadoop/dfs/nn\":\"IMAGE_AND_EDITS\",
 \"/data/1/hadoop/dfs/nn\":\"IMAGE_AND_EDITS\"
 }
 }"
}

This output is slightly reformatted for readability, and only a single datanode is shown
in the LiveNodes map, but it should otherwise be self-explanatory. Some fields contain
strings that are in turn distinct JSON blobs. Although this is awkward in the JSON
output, it’s a side effect of the way the underlying JMX MBeans store these values. If
you do decide to use the JMX JSON servlet, expect to encounter this in a few places.
In the above example, you can see this in the LiveNodes, DeadNodes, and NameDirSta
tuses, for example.

Recommendation: From this data, perform the following critical health checks:

• The absolute amount of free HDFS capacity in bytes (Free) is over an acceptable
threshold.

• The absolute number of active (NameDirStatuses["active"]) metadata paths is
equal to those specified in dfs.name.dir, or failed (NameDirStatuses["failed"])
paths is equal to zero.

The next set of checks uses metrics found in the Hadoop:service=NameNode,name=FSNa
mesystem MBean (see Example 10-8). Here you will find filesystem-level metrics about
files, blocks, edit log transactions, checkpoint operations, and more.

Example 10-8. Sample FSNamesystem JSON metric data from the namenode

{
 "name" : "Hadoop:service=NameNode,name=FSNamesystem",
 "modelerType" : "FSNamesystem",
 "tag.Context" : "dfs",
 "tag.HAState" : "active",
 "tag.Hostname" : "hadoop01.cloudera.com",
 "MissingBlocks" : 4725,
 "ExpiredHeartbeats" : 2,
 "TransactionsSinceLastCheckpoint" : 58476,
 "TransactionsSinceLastLogRoll" : 7,
 "LastWrittenTransactionId" : 58477,
 "LastCheckpointTime" : 1340735472996,
 "CapacityTotalGB" : 180555.0,
 "CapacityUsedGB" : 46583.0,

Health Monitoring | 245

www.it-ebooks.info

http://www.it-ebooks.info/

 "CapacityRemainingGB" : 123118.0,
 "TotalLoad" : 9,
 "BlocksTotal" : 179218,
 "FilesTotal" : 41219,
 "PendingReplicationBlocks" : 0,
 "UnderReplicatedBlocks" : 4736,
 "CorruptBlocks" : 0,
 "ScheduledReplicationBlocks" : 0,
 "PendingDeletionBlocks" : 0,
 "ExcessBlocks" : 0,
 "PostponedMisreplicatedBlocks" : 0,
 "PendingDataNodeMessageCount" : 0,
 "MillisSinceLastLoadedEdits" : 0,
 "BlockCapacity" : 8388608,
 "TotalFiles" : 41219
}

You may notice redundant information between NameNodeInfo and FSNamesystem like
the former’s Total and the latter’s CapacityTotalGB (albeit in a different unit). In fact,
if you look closer, there’s even redundant information in FSNamesystem itself (see
TotalFiles and FilesTotal). All of these numbers are computed using the same snap-
shot of the metrics and, as a result, should be consistent with one another.

Recommendation: Create health checks for the following:

• The absolute number of missing (MissingBlocks) and corrupt blocks (Corrupt
Blocks) are lower than a acceptable threshold. Both of these metrics should be zero,
ideally.

• The absolute number of HDFS blocks that can still be allocated (BlockCapacity).
This is the maximum number of blocks that a namenode will track before it refuses
new file creation. It exists to prevent accidental out of memory errors due to over-
allocation. Increasing the namenode heap size automatically adjusts the total num-
ber of blocks allowed.

• The result of the current epoch time minus the last time a namenode checkpoint
was performed (LastCheckpointTime) is less than three days. In the previous ex-
ample, LastCheckpointTime is 1340735472996 or Tuesday, June 26th 11:31:12
PDT 2012. Assuming that the current time is 1341356207664 or Tuesday Jul 03
15:56:47 PDT 2012, this yields 620734668 or approximately 7.1 days because
(1340735472996 – 1341356207664) / 1000 / 60 / 60 / 24 = 7.1. Note that epoch
timestamps generated by Java are expressed in milliseconds, not seconds—hence
the division by 1000 in the example.

MapReduce Checks
As with HDFS, most of the monitoring of MapReduce is done at the master process—
in this case, the jobtracker. There are two major components to monitoring MapRe-
duce: monitoring the framework and monitoring individual jobs. Job-level monitoring

246 | Chapter 10: Monitoring

www.it-ebooks.info

http://www.it-ebooks.info/

is not a good fit for most monitoring systems and can be incredibly application specific.
Instead, we’ll focus on monitoring the MapReduce framework.

Using the same JMX REST servlet as we did earlier, let’s take a look at some of the
available metrics in Example 10-9.

Example 10-9. Sample JobTrackerInfo JSON metric data from the jobtracker

{
 "name" : "hadoop:service=JobTracker,name=JobTrackerInfo",
 "modelerType" : "org.apache.hadoop.mapred.JobTracker",
 "Hostname" : "m0507",
 "Version" : "2.0.0-mr1-cdh4.0.1, rUnknown",
 "ConfigVersion" : "default",
 "ThreadCount" : 45,
 "SummaryJson" : "{
 \"nodes\":8,
 \"alive\":8,
 \"blacklisted\":0,
 \"slots\":{
 \"map_slots\":128,
 \"map_slots_used\":128,
 \"reduce_slots\":48,
 \"reduce_slots_used\":0
 },
 \"jobs\":3
 }",
 "AliveNodesInfoJson" : "[
 {
 \"hostname\":\"hadoop01.cloudera.com\",
 \"last_seen\":1343782287934,
 \"health\":\"OK\",
 \"slots\":{
 \"map_slots\":16,
 \"map_slots_used\":16,
 \"reduce_slots\":6,
 \"reduce_slots_used\":0
 },
 \"failures\":0,
 \"dir_failures\":0
 },
 // Remaining hosts omitted...
]",
 "BlacklistedNodesInfoJson" : "[]",
 "QueueInfoJson" : "{\"default\":{\"info\":\"N/A\"}}"
}

Aggregate cluster metrics are provided as JSON blob in the SummaryJson field. The total
number of nodes currently alive, total map slots available and used, total reduce slots
available and used, and total job submissions are also available.

Health Monitoring | 247

www.it-ebooks.info

http://www.it-ebooks.info/

Recommendation: Perform the following cluster-level checks:

• Check whether the number of alive nodes is within a tolerance that still allows your
jobs to complete within their service-level agreement. Depending on the size of
your cluster and the criticality of jobs, this will vary.

• Check whether the number of blacklisted tasktrackers is below some percentage
of the total number of tasktrackers in the cluster. A blacklisted tasktracker is one
that is alive but is demonstrating repeated failures across jobs. This number should
ideally be zero, although it’s possible to trigger false positives if a user or a system
rapidly submits a series of poorly written jobs that ultimately fail. On the other
hand, such a result is almost certainly indicative of a problem that should be dealt
with as well, although not specifically a cluster issue.

You can see that like the namenode, the jobtracker reports all of its workers (task-
trackers, in this case) and their status. These are hosts from which the aggregate cluster
information is taken. Be careful not to over-monitor individual tasktrackers, as it’s not
unusual to have intermittent failures at scale. You may optionally choose to monitor
for dir_failures, which represent a directory in mapred.local.dir that has been ig-
nored by a tasktracker, which is usually a sign of a impending (or complete) disk failure
within the machine. If a datanode shares the same underlying device, expect this to
impact it as well. The failures field is a counter of the number of task failures that
occurred on that specific tasktracker. It’s common for some number of failures to occur,
so it’s hard to provide a concrete recommendation as to a specific threshold. Instead,
you can optionally monitor the deviation of the tasktracker’s number of failures from
the average over the others.

248 | Chapter 10: Monitoring

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Backup and Recovery

Data Backup
After accumulating a few petabytes of data or so, someone inevitably asks how all this
data is going to be backed up. It’s a deceptively difficult problem to overcome when
working with such a large repository of data. Overcoming even simple problems like
knowing what has changed since the last backup can prove difficult with a high rate of
new data arrival in a sufficiently large cluster. All backup solutions need to deal ex-
plicitly with a few key concerns. Selecting the data that should be backed up is a two-
dimensional problem, in that both the critical datasets must be choosen, as must, within
each dataset, the subset of the data that has not yet been backed up. The timeliness of
backups is another important question. Data can be backed up less frequently, in larger
batches, but this affects the window of possible data loss. Ratcheting up the frequency
of a backup may not be feasible due to the incurred overhead. Finally, one of the most
difficult problems that must be tackled is that of backup consistency. Copying the data
as it’s changing can potentially result in an invalid backup. For this reason, some
knowledge of how the application functions with respect to the underlying filesystem
is necessary. Those with experience administering relational databases are intimately
aware of the problems with simply copying data out from under a running system.

The act of taking a backup implies the execution of a batch operation that (usually)
marks a specific point in time, copies a subset of the total data to a second location,
and records the success or failure of the process. Whether applications can continue
working during the copy phase depends on how they manage data and the features
offered by the filesystem. Many enterprise filesystems support advanced features such
as snapshots to minimize the window of time required to get a consistent capture of
the data on disk and decoupling it from the time required to copy said data elsewhere.
Today, HDFS doesn’t support snapshots, although the community is working on this
feature as part of the Apache HDFS JIRA HDFS-233. It is a little simpler working with
HDFS, however, because of the write-once semantics of files. Short of replacing a file,
it is possible only to append to an existing file or write a new file altogether.

249

www.it-ebooks.info

https://issues.apache.org/jira/browse/HDFS-233
http://www.it-ebooks.info/

There are two primary approaches to backup today. The first is the distributed copy
tool, or distcp for short, which copies HDFS data in parallel either to another location
within the same cluster, or between clusters. Another common approach is an archi-
tectural solution to the backup problem that involves writing incoming data to two
clusters from an application. Each has advantages and disadvantages, and they lend
themselves to different situations.

Distributed Copy (distcp)
Hadoop includes the distcp utility, which is, effectively, a MapReduce job that per-
forms parallel copies of HDFS either to the local cluster or to a remote cluster. Users
of the rsync utility will notice similarities in the feature set of distcp and should feel at
home with how it works. For others, much of the help text is self-explanatory (see
Example 11-1). In Apache Hadoop 1.x and CDH3 releases, distcp is a subcommand
of the hadoop command, whereas later versions include it as a subcommand of mapred.

Example 11-1. DistCp help text

[esammer@hadoop01 ~]$ hadoop distcp
java.lang.IllegalArgumentException: Missing dst path
 at org.apache.hadoop.tools.DistCp$Arguments.valueOf(DistCp.java:830)
 at org.apache.hadoop.tools.DistCp.run(DistCp.java:881)
 at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:65)
 at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:79)
 at org.apache.hadoop.tools.DistCp.main(DistCp.java:908)

distcp [OPTIONS] <srcurl>* <desturl>

OPTIONS:
-p[rbugp] Preserve status
 r: replication number
 b: block size
 u: user
 g: group
 p: permission
 -p alone is equivalent to -prbugp
-i Ignore failures
-log <logdir> Write logs to <logdir>
-m <num_maps> Maximum number of simultaneous copies
-overwrite Overwrite destination
-update Overwrite if src size different from dst size
-skipcrccheck Do not use CRC check to determine if src is
 different from dest. Relevant only if -update
 is specified
-f <urilist_uri> Use list at <urilist_uri> as src list
-filelimit <n> Limit the total number of files to be <= n
-sizelimit <n> Limit the total size to be <= n bytes
-delete Delete the files existing in the dst but not in src
-mapredSslConf <f> Filename of SSL configuration for mapper task

NOTE 1: if -overwrite or -update are set, each source URI is
 interpreted as an isomorphic update to an existing directory.

250 | Chapter 11: Backup and Recovery

www.it-ebooks.info

http://www.it-ebooks.info/

For example:
hadoop distcp -p -update "hdfs://A:8020/user/foo/bar" "hdfs://B:8020/user/foo/baz"

 would update all descendants of 'baz' also in 'bar'; it would
 not update /user/foo/baz/bar

NOTE 2: The parameter <n> in -filelimit and -sizelimit can be
 specified with symbolic representation. For examples,
 1230k = 1230 * 1024 = 1259520
 891g = 891 * 1024^3 = 956703965184

The URLs referred to by the distcp help text (seen in the previous extract as <srcurl>
and <dsturl>) are the same as one would use when referring to an HDFS or local file-
system path. That is, to copy data from the HDFS cluster managed by namenode A to
the HDFS cluster managed by namenode B, we’d use the command hadoop distcp
hdfs://A:8020/path/one hdfs://B:8020/path/two as in Example 11-2.

Example 11-2. Performing a simple copy with distcp between clusters

[esammer@hadoop01 ~]$ hadoop distcp hdfs://A:8020/path/one hdfs://B:8020/path/two

Note that it’s perfectly valid to copy data to the same cluster, but under a different path,
as shown in Example 11-3.

Example 11-3. Performing a copy with distcp within the same cluster

[esammer@hadoop01 ~]$ hadoop distcp hdfs://A:8020/path/one hdfs://A:8020/path/two

In fact, it’s possible to omit the scheme and host portions of the URLs if the default
from the client’s fs.default.name parameter is sufficient. In Example 11-4, we assume
that fs.default.name is set to hdfs://A:8020/.

Example 11-4. Performing a copy with distcp within the same cluster using the default scheme

[esammer@hadoop01 ~]$ hadoop distcp /path/one /path/two

When the utility runs, it creates a list of files and directories to copy based on the source
URL and creates a MapReduce job with a fixed number of map tasks, each of which
works on a set of files. The -m option controls the number of mapper to spawn for a
given job. By default, distcp assumes that you want to perform a basic copy for which
the destination doesn’t exist. If the destination does exist, you must tell distcp how
you want it to behave with respect to existing data. You may optionally overwrite any
existing files with the -overwrite option or attempt to update or freshen the data with -
update. Updating existing data uses the size of the file, but also a CRC32 checksum, to
decide what files have changed. This task can take some time, so it’s possible to disable
the CRC32 checksum calculation with the -skipcrccheck option. The -delete option,
like rsync’s --delete option, attempts to delete any files in the destination that do not
exist in the source path. Combined with the -update option, this option makes
distcp behave like a file synchronization utility. In most cases, it’s desirable to preserve
the owner, group, permissions, and other file attributes when performing a copy,

Data Backup | 251

www.it-ebooks.info

http://www.it-ebooks.info/

although doing so requires superuser privileges on the destination cluster because
you’re writing files as users other than the effective user of your process. As for the
permissions required to read the files on the source cluster, you must, of course, have
at least read access to the files you wish to back up or be the super user.

There are, however, a few limitations to using distcp for backups. Because it runs as a
MapReduce job, distcp does chew up map slots and has all the same associated over-
head therein. Each map task in the job is essentially an HDFS client of the remote
cluster, and all the same HDFS write path semantics apply. Notably, each client—
which in this case, is any worker node in the cluster—must be able to write to each
datanode in the remote cluster directly. This setup creates an N x M communication
pattern requirement between the two clusters, where N is the number of source cluster
nodes and M is the number of destination cluster nodes. Environments that do not
permit full N x M communication between clusters either will not be able to use distcp
or will experience a ton of pain trying to configure SOCKS proxies appropriately
(which, ultimately, may not be able to withstand the amount of data transfer). De-
pending on the network infrastructure, this may or may not be a problem. It’s also
important to control the number of map tasks and data transferred appropriately, lest
you saturate any private data center interconnect.

When using the hdfs:// schema to connect to clusters, each cluster must be running the
same version of the Hadoop software. If this is not the case, webhdfs:// should be used
instead; it uses an HTTP-based, version-agnostic protocol to transfer data. This benefit
does come at some cost to performance, but presumably being able to transfer the data
slower is better than not being able to transfer it at all. One final option is to use the
httpfs:// protocol, which, like webhdfs://, uses HTTP, but instead of using the embedded
web server in each datanode, it uses a dedicated HDFS HttpFS proxy daemon to com-
municate with the cluster. Both webhdfs:// and httpfs:// require some additional, minor
configuration.

Parallel Data Ingestion
Traditionally, we think of the data flow as an application to master storage, and then
master storage to slave or backup storage as a batch job, at a fixed interval. In fact,
that’s what the preceding section describes, and it makes sense for a few reasons. This
model is simple for application developers to deal with and allows backup to be con-
trolled in a central manner. Backup is outside of the developer domain, a problem for
someone else to contend with, and largely transparent. For operations staff, this is the
source of many consistency questions: where exactly is the opportunity to take a con-
sistent picture of the data, given different applications? A different perspective on the
backup problem is to instead handle it explicitly at the application level, where the
consistency semantics are well-known. Treating backup as a first-class problem to be
handled by the application forces the problem into the spotlight, where it can be dealt
with explicitly and controlled.

252 | Chapter 11: Backup and Recovery

www.it-ebooks.info

http://www.it-ebooks.info/

So what does that mean? Trivially, have each application responsible for data ingestion
write to two discreet clusters, completely eliminating the separate backup process. Al-
though it’s possible to make two write operations, normally this is done by having
applications write to a durable service that in turn delivers events to two different places.
This approach decouples the application write from the cluster writes, acting as a
queue, similar to a messaging system. For this method to be feasible, the application
must be sure to deliver to the ingest service, which delivers to each cluster asynchro-
nously so that blocking does not occur. Additionally, for the application to know that
the data will safely delivered to each cluster (eventually), the ingest service must be
durable. In some cases, this durability can be traded for speed, although that wouldn’t
be appropriate for revenue-bearing events.

You could build this setup yourself; however, a number of open source systems in the
Hadoop ecosystem provide exactly this functionality. One of these systems is Apache
Flume. Flume can be configured to listen to various data sources like RPC interfaces—
for instance, writing received events to one or more channels, which are ultimately
connected to sinks. Channels are effectively a queue, and can be reliable, in which case
they store data durably on disk before attempting delivery, or not, in which case they
only store events in memory while they shuffle it along as fast as possible. Sinks take
events from channels and do something with them. The most popular of the sinks is
the HDFS sink, which writes events into HDFS in various configurable ways. Flume’s
ability to “fan out” and duplicate events to separate channels, each of which may go to
separate clusters, is one way to deal with the problem of backup, that is, avoiding it as
much as possible by rethinking the problem.

Flume isn’t a perfect fit for all use cases. It is specifically built for streaming data sources
that produce data as discreet events. Primarily, this means log files or things that look
like that: syslog events, log4j messages, and so forth. Refer to the Flume website and
documentation for more information about its intended set of use cases.

When plain old files need to be uploaded to HDFS, the parallel write technique can
still be used. Rather than have processes write files directly to HDFS or call the hdfs
dfs -put command directly, write the file to a designated directory on a local filesystem
somewhere. Use a polling process to scan this directory for new files and create har-
dlinks (not symlinks) into a set of directories that act as a queue for each cluster. When
the hardlinks are all successfully created, the original entry in the first directory can be
deleted. A poller for each cluster can now run asynchronously, scanning only its di-
rectory for new files to upload. When the file is successfully uploaded, it can be deleted.
The hardlink decrements the reference count on the data on disk, and after all clusters
have copied and deleted their respective pending hardlinks, the data is removed from
the local disk. This approach makes sense for cases in which data should be uploaded
to multiple HDFS clusters reliably and removed from the staging or incoming area.

Using these techniques, the only remaining data that needs to be backed up in a tra-
ditional fashion is that which is generated as a result of MapReduce jobs within HDFS.
Although some of this data is critical and should be backed up using distcp and other

Data Backup | 253

www.it-ebooks.info

http://flume.apache.org/
http://www.it-ebooks.info/

traditional cluster-to-cluster copy techniques, it’s possible that much of it can be re-
generated from the raw source data that was replicated on ingestion. With the total
cluster processing power of MapReduce, regenerating the data in the event of cata-
strophic failure may be possible in a reasonably small amount of time, and although
it’s not the most fun way to spend an afternoon or two, it may be a calculated risk.

Parallel writes to multiple clusters have the added benefit of drastically reducing the
window of time between discreet backup operations. Data is much fresher in both
clusters, and this approach also opens the possibility of running read-only or ad hoc
analysis jobs on the otherwise backup-only cluster. Another nice side effect is that by
streaming data throughout the data to two clusters, the costly, large, batch network
operation of a full or incremental backup is amortized throughout the day. This way
tends to be easier to manage and control and reduces the risk of a large backup “eating
its tail” (meaning that the next backup is scheduled to start, but the previous instance
is still running). Recovering from the case in which one cluster falls behind happens
implicitly, because this technique is based on the idea of queuing. Temporarily disa-
bling backups for maintenance is unnecessary; data destined for a cluster in mainte-
nance accumulates in the queue until the cluster returns to service.

Again, there’s no free lunch to be had here. The downside to this approach is that the
idea of backups is something developers have to think about. Some (including myself)
might argue that this is where the problem belongs, but there are plenty of reasons why
this may not be feasible within an organization. Having additional infrastructure for
data ingestion like Flume or file queuing means more to monitor.

Namenode Metadata
Without the namenode metadata, there might as well be no data in HDFS. Historically,
for mission-critical production clusters, it has been essential to script namenode met-
adata backup. In Apache Hadoop 1.0 and CDH3, this is done by using two different
calls to the /getimage servlet included in the namenode’s embedded web server. The
first call uses the query parameter getimage=1 and retrieves the fsimage file; the second
uses getedit=1 and returns the edits file. In both cases, the data is retrieved at a con-
sistent point from disk, which guarantees that it can be safely restored later. In Exam-
ple 11-5, we fetch a copy of the fsimage and edits files via the servlet and then use the
md5sum command to prove that they are identical to what’s on disk in the namenode’s
metadata directory. This validation step is only for illustration purposes; on an active
cluster, it is very likely that the edits file would have changed between the time we
fetched it and the time we compared the files with md5sum.

Example 11-5. Backing up the namenode metadata (Apache Hadoop 1.0 and CDH3)

[root@hadoop01 ~]# curl -o fsimage.20120801 'http://hadoop01:50070/getimage?getimage=1' \
 2>/dev/null
[root@hadoop01 ~]# curl -o edits.20120801 'http://hadoop01:50070/getimage?getedit=1' \
 2>/dev/null

254 | Chapter 11: Backup and Recovery

www.it-ebooks.info

http://www.it-ebooks.info/

[root@hadoop01 ~]# md5sum fsimage.20120801 /data/1/dfs/nn/current/fsimage \
 edits.20120801 /data/1/dfs/nn/current/edits
d04d6b0f60cf9603fcc7ff45b620d341 fsimage.20120801
d04d6b0f60cf9603fcc7ff45b620d341 /data/1/dfs/nn/current/fsimage
d944934c10b4f6b5ac8ba5f0490a759b edits.20120801
d944934c10b4f6b5ac8ba5f0490a759b /data/1/dfs/nn/current/edits

Apache Hadoop 2.0 and CDH4 use a new metadata storage format designed to be more
resilient to corruption, as described in “Managing Filesystem Metadata” on page 14.
As a result, the /getimage servlet in these versions works a little differently, although it
serves the same purpose. To retrieve the latest fsimage, you must additionally pass the
txid=latest query parameter. Retrieving edit transactions is a bit more complicated
because the new storage system uses multiple edits files. It is now necessary to pass a
start and end transaction ID. Despite being more cumbersome, this approach allows
for incremental transaction retrieval, which can make the backup process more effi-
cient. Example 11-6 demonstrates retrieval of the latest fsimage followed by the trans-
actions 17 through 109. If an attempt is made to fetch a transaction range that the
namenode does not have, an HTTP 410 error is returned, along with an HTML docu-
ment containing a stack trace.

Example 11-6. Backing up the namenode metadata (Apache Hadoop 2.0 and CDH4)

[root@hadoop01 ~]# curl -o fsimage.20120801 \
 'http://hadoop01:50070/getimage?getimage=1&txid=latest' 2>/dev/null
[root@hadoop01 ~]# curl -o edits-17-109.20120801 \
 'http://hadoop01:50070/getimage?getedit=1&startTxId=17&endTxId=109' \
 2>/dev/null

Namenode Metadata | 255

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

APPENDIX

Deprecated Configuration Properties

In Apache Hadoop 2.0 and CDH4, a large swath of configuration properties were dep-
recated and replaced with properties that have more accurate names. Although the
original property names continue to work for standard (non-HA, nonfederated) HDFS
deployments and MRv1, users of these versions are encouraged to switch to the new
properties. For those who wish to use new features such as HDFS high availability, the
new properties must be used. Table A-1 lists the Apache Hadoop 1.0/CDH3 property
name and its new Apache Hadoop 2.0/CDH4 counterpart. Property names are ordered
by the original name to make reference easier.

Table A-1. Deprecated property names and their replacements

Original Property Name New Property Name

StorageId dfs.datanode.StorageId

create.empty.dir.if.nonexist mapreduce.jobcontrol.createdir.ifnotexist

dfs.access.time.precision dfs.namenode.accesstime.precision

dfs.backup.address dfs.namenode.backup.address

dfs.backup.http.address dfs.namenode.backup.http-address

dfs.balance.bandwidthPerSec dfs.datanode.balance.bandwidthPerSec

dfs.block.size dfs.blocksize

dfs.client.buffer.dir fs.client.buffer.dir

dfs.data.dir dfs.datanode.data.dir

dfs.datanode.max.xcievers dfs.datanode.max.transfer.threads

dfs.df.interval fs.df.interval

dfs.http.address dfs.namenode.http-address

dfs.https.address dfs.namenode.https-address

dfs.https.client.keystore.resource dfs.client.https.keystore.resource

dfs.https.need.client.auth dfs.client.https.need-auth

dfs.max-repl-streams dfs.namenode.replication.max-streams

257

www.it-ebooks.info

http://www.it-ebooks.info/

Original Property Name New Property Name

dfs.max.objects dfs.namenode.max.objects

dfs.name.dir dfs.namenode.name.dir

dfs.name.dir.restore dfs.namenode.name.dir.restore

dfs.name.edits.dir dfs.namenode.edits.dir

dfs.permissions dfs.permissions.enabled

dfs.permissions.supergroup dfs.permissions.superusergroup

dfs.read.prefetch.size dfs.client.read.prefetch.size

dfs.replication.considerLoad dfs.namenode.replication.considerLoad

dfs.replication.interval dfs.namenode.replication.interval

dfs.replication.min dfs.namenode.replication.min

dfs.replication.pending.timeout.sec dfs.namenode.replication.pending.timeout-
sec

dfs.safemode.extension dfs.namenode.safemode.extension

dfs.safemode.threshold.pct dfs.namenode.safemode.threshold-pct

dfs.secondary.http.address dfs.namenode.secondary.http-address

dfs.socket.timeout dfs.client.socket-timeout

dfs.upgrade.permission dfs.namenode.upgrade.permission

dfs.write.packet.size dfs.client-write-packet-size

fs.checkpoint.dir dfs.namenode.checkpoint.dir

fs.checkpoint.edits.dir dfs.namenode.checkpoint.edits.dir

fs.checkpoint.period dfs.namenode.checkpoint.period

fs.default.name fs.defaultFS

hadoop.configured.node.mapping net.topology.configured.node.mapping

hadoop.job.history.location mapreduce.jobtracker.jobhistory.location

hadoop.native.lib io.native.lib.available

hadoop.net.static.resolutions mapreduce.tasktracker.net.static.resolu
tions

hadoop.pipes.command-file.keep mapreduce.pipes.commandfile.preserve

hadoop.pipes.executable mapreduce.pipes.executable

hadoop.pipes.executable.interpretor mapreduce.pipes.executable.interpretor

hadoop.pipes.java.mapper mapreduce.pipes.isjavamapper

hadoop.pipes.java.recordreader mapreduce.pipes.isjavarecordreader

hadoop.pipes.java.recordwriter mapreduce.pipes.isjavarecordwriter

hadoop.pipes.java.reducer mapreduce.pipes.isjavareducer

hadoop.pipes.partitioner mapreduce.pipes.partitioner

258 | Appendix: Deprecated Configuration Properties

www.it-ebooks.info

http://www.it-ebooks.info/

Original Property Name New Property Name

heartbeat.recheck.interval dfs.namenode.heartbeat.recheck-interval

io.bytes.per.checksum dfs.bytes-per-checksum

io.sort.factor mapreduce.task.io.sort.factor

io.sort.mb mapreduce.task.io.sort.mb

io.sort.spill.percent mapreduce.map.sort.spill.percent

job.end.notification.url mapreduce.job.end-notification.url

job.end.retry.attempts mapreduce.job.end-notifica
tion.retry.attempts

job.end.retry.interval mapreduce.job.end-notifica
tion.retry.interval

job.local.dir mapreduce.job.local.dir

jobclient.completion.poll.interval mapreduce.client.completion.pollinterval

jobclient.output.filter mapreduce.client.output.filter

jobclient.progress.monitor.poll.interval mapreduce.client.progressmonitor.polli
nterval

keep.failed.task.files mapreduce.task.files.preserve.failedtasks

keep.task.files.pattern mapreduce.task.files.preserve.filepattern

key.value.separator.in.input.line mapreduce.input.keyvaluelinerecor
dreader.key.value.separator

local.cache.size mapreduce.tasktracker.cache.local.size

map.input.file mapreduce.map.input.file

map.input.length mapreduce.map.input.length

map.input.start mapreduce.map.input.start

map.output.key.field.separator mapreduce.map.output.key.field.separator

map.output.key.value.fields.spec mapreduce.fieldsel.map.out
put.key.value.fields.spec

mapred.acls.enabled mapreduce.cluster.acls.enabled

mapred.binary.partitioner.left.offset mapreduce.partition.binaryparti
tioner.left.offset

mapred.binary.partitioner.right.offset mapreduce.partition.binaryparti
tioner.right.offset

mapred.cache.archives mapreduce.job.cache.archives

mapred.cache.archives.timestamps mapreduce.job.cache.archives.timestamps

mapred.cache.files mapreduce.job.cache.files

mapred.cache.files.timestamps mapreduce.job.cache.files.timestamps

mapred.cache.localArchives mapreduce.job.cache.local.archives

mapred.cache.localFiles mapreduce.job.cache.local.files

Deprecated Configuration Properties | 259

www.it-ebooks.info

http://www.it-ebooks.info/

Original Property Name New Property Name

mapred.child.tmp mapreduce.task.tmp.dir

mapred.cluster.average.blacklist.thresh
old

mapreduce.jobtracker.blacklist.aver
age.threshold

mapred.cluster.map.memory.mb mapreduce.cluster.mapmemory.mb

mapred.cluster.max.map.memory.mb mapreduce.jobtracker.maxmapmemory.mb

mapred.cluster.max.reduce.memory.mb mapreduce.jobtracker.maxreducememory.mb

mapred.cluster.reduce.memory.mb mapreduce.cluster.reducememory.mb

mapred.committer.job.setup.cleanup.needed mapreduce.job.commit
ter.setup.cleanup.needed

mapred.compress.map.output mapreduce.map.output.compress

mapred.create.symlink mapreduce.job.cache.symlink.create

mapred.data.field.separator mapreduce.fieldsel.data.field.separator

mapred.debug.out.lines mapreduce.task.debugout.lines

mapred.healthChecker.interval mapreduce.tasktracker.healthchecker.inter
val

mapred.healthChecker.script.args mapreduce.tasktracker.health
checker.script.args

mapred.healthChecker.script.path mapreduce.tasktracker.health
checker.script.path

mapred.healthChecker.script.timeout mapreduce.tasktracker.health
checker.script.timeout

mapred.heartbeats.in.second mapreduce.jobtracker.heartbeats.in.second

mapred.hosts mapreduce.jobtracker.hosts.filename

mapred.hosts.exclude mapreduce.jobtracker.hosts.exclude.file
name

mapred.inmem.merge.threshold mapreduce.reduce.merge.inmem.threshold

mapred.input.dir mapreduce.input.fileinputformat.inputdir

mapred.input.dir.formats mapreduce.input.multipleinputs.dir.for
mats

mapred.input.dir.mappers mapreduce.input.multipleinputs.dir.map
pers

mapred.input.pathFilter.class mapreduce.input.pathFilter.class

mapred.jar mapreduce.job.jar

mapred.job.classpath.archives mapreduce.job.classpath.archives

mapred.job.classpath.files mapreduce.job.classpath.files

mapred.job.id mapreduce.job.id

mapred.job.map.memory.mb mapreduce.map.memory.mb

260 | Appendix: Deprecated Configuration Properties

www.it-ebooks.info

http://www.it-ebooks.info/

Original Property Name New Property Name

mapred.job.name mapreduce.job.name

mapred.job.priority mapreduce.job.priority

mapred.job.queue.name mapreduce.job.queuename

mapred.job.reduce.input.buffer.percent mapreduce.reduce.input.buffer.percent

mapred.job.reduce.markreset.buffer.per
cent

mapreduce.reduce.markreset.buffer.percent

mapred.job.reduce.memory.mb mapreduce.reduce.memory.mb

mapred.job.reduce.total.mem.bytes mapreduce.reduce.memory.totalbytes

mapred.job.reuse.jvm.num.tasks mapreduce.job.jvm.numtasks

mapred.job.shuffle.input.buffer.percent mapreduce.reduce.shuffle.input.buffer.per
cent

mapred.job.shuffle.merge.percent mapreduce.reduce.shuffle.merge.percent

mapred.job.tracker mapreduce.jobtracker.address

mapred.job.tracker.handler.count mapreduce.jobtracker.handler.count

mapred.job.tracker.history.completed.loca
tion

mapreduce.jobtracker.jobhistory.comple
ted.location

mapred.job.tracker.http.address mapreduce.jobtracker.http.address

mapred.job.tracker.jobhis
tory.lru.cache.size

mapreduce.jobtracker.jobhis
tory.lru.cache.size

mapred.job.tracker.persist.jobsta
tus.active

mapreduce.jobtracker.persist.jobsta
tus.active

mapred.job.tracker.persist.jobstatus.dir mapreduce.jobtracker.persist.jobsta
tus.dir

mapred.job.tracker.persist.jobsta
tus.hours

mapreduce.jobtracker.persist.jobsta
tus.hours

mapred.job.tracker.retire.jobs mapreduce.jobtracker.retirejobs

mapred.job.tracker.retiredjobs.cache.size mapreduce.jobtracker.retired
jobs.cache.size

mapred.jobinit.threads mapreduce.jobtracker.jobinit.threads

mapred.jobtracker.instrumentation mapreduce.jobtracker.instrumentation

mapred.jobtracker.job.history.block.size mapreduce.jobtracker.jobhis
tory.block.size

mapred.jobtracker.maxtasks.per.job mapreduce.jobtracker.maxtasks.perjob

mapred.jobtracker.restart.recover mapreduce.jobtracker.restart.recover

mapred.jobtracker.taskScheduler mapreduce.jobtracker.taskscheduler

mapred.jobtracker.taskScheduler.maxRun
ningTasksPerJob

mapreduce.jobtracker.taskscheduler.maxrun
ningtasks.perjob

Deprecated Configuration Properties | 261

www.it-ebooks.info

http://www.it-ebooks.info/

Original Property Name New Property Name

mapred.jobtracker.taskalloc.capacitypad mapreduce.jobtracker.taskscheduler.taskal
loc.capacitypad

mapred.join.expr mapreduce.join.expr

mapred.join.keycomparator mapreduce.join.keycomparator

mapred.lazy.output.format mapreduce.output.lazyoutputformat.output
format

mapred.line.input.format.linespermap mapreduce.input.lineinputformat.linesper
map

mapred.linerecordreader.maxlength mapreduce.input.linerecordreader.line.max
length

mapred.local.dir mapreduce.cluster.local.dir

mapred.local.dir.minspacekill mapreduce.tasktracker.local.dir.minspace
kill

mapred.local.dir.minspacestart mapreduce.tasktracker.local.dir.minspaces
tart

mapred.map.child.env mapreduce.map.env

mapred.map.child.java.opts mapreduce.map.java.opts

mapred.map.child.log.level mapreduce.map.log.level

mapred.map.max.attempts mapreduce.map.maxattempts

mapred.map.output.compression.codec mapreduce.map.output.compress.codec

mapred.map.task.debug.script mapreduce.map.debug.script

mapred.map.tasks mapreduce.job.maps

mapred.map.tasks.speculative.execution mapreduce.map.speculative

mapred.mapoutput.key.class mapreduce.map.output.key.class

mapred.mapoutput.value.class mapreduce.map.output.value.class

mapred.mapper.regex mapreduce.mapper.regex

mapred.mapper.regex.group mapreduce.mapper.regexmapper..group

mapred.max.map.failures.percent mapreduce.map.failures.maxpercent

mapred.max.reduce.failures.percent mapreduce.reduce.failures.maxpercent

mapred.max.split.size mapreduce.input.fileinputformat.split.max
size

mapred.max.tracker.blacklists mapreduce.jobtracker.tasktracker.maxblack
lists

mapred.max.tracker.failures mapreduce.job.maxtaskfailures.per.tracker

mapred.merge.recordsBeforeProgress mapreduce.task.merge.progress.records

mapred.min.split.size mapreduce.input.fileinputformat.split.min
size

262 | Appendix: Deprecated Configuration Properties

www.it-ebooks.info

http://www.it-ebooks.info/

Original Property Name New Property Name

mapred.min.split.size.per.node mapreduce.input.fileinputformat.split.min
size.per.node

mapred.min.split.size.per.rack mapreduce.input.fileinputformat.split.min
size.per.rack

mapred.output.compress mapreduce.output.fileoutputformat.com
press

mapred.output.compression.codec mapreduce.output.fileoutputformat.com
press.codec

mapred.output.compression.type mapreduce.output.fileoutputformat.com
press.type

mapred.output.dir mapreduce.output.fileoutputformat.output
dir

mapred.output.key.class mapreduce.job.output.key.class

mapred.output.key.comparator.class mapreduce.job.output.key.comparator.class

mapred.output.value.class mapreduce.job.output.value.class

mapred.output.value.groupfn.class mapreduce.job.output.group.compara
tor.class

mapred.permissions.supergroup mapreduce.cluster.permissions.supergroup

mapred.pipes.user.inputformat mapreduce.pipes.inputformat

mapred.reduce.child.env mapreduce.reduce.env

mapred.reduce.child.java.opts mapreduce.reduce.java.opts

mapred.reduce.child.log.level mapreduce.reduce.log.level

mapred.reduce.max.attempts mapreduce.reduce.maxattempts

mapred.reduce.parallel.copies mapreduce.reduce.shuffle.parallelcopies

mapred.reduce.slowstart.completed.maps mapreduce.job.reduce.slowstart.completed
maps

mapred.reduce.task.debug.script mapreduce.reduce.debug.script

mapred.reduce.tasks mapreduce.job.reduces

mapred.reduce.tasks.speculative.execution mapreduce.reduce.speculative

mapred.seqbinary.output.key.class mapreduce.output.seqbinaryoutputfor
mat.key.class

mapred.seqbinary.output.value.class mapreduce.output.seqbinaryoutputfor
mat.value.class

mapred.shuffle.connect.timeout mapreduce.reduce.shuffle.connect.timeout

mapred.shuffle.read.timeout mapreduce.reduce.shuffle.read.timeout

mapred.skip.attempts.to.start.skipping mapreduce.task.skip.start.attempts

mapred.skip.map.auto.incr.proc.count mapreduce.map.skip.proc-count.auto-incr

Deprecated Configuration Properties | 263

www.it-ebooks.info

http://www.it-ebooks.info/

Original Property Name New Property Name

mapred.skip.map.max.skip.records mapreduce.map.skip.maxrecords

mapred.skip.on mapreduce.job.skiprecords

mapred.skip.out.dir mapreduce.job.skip.outdir

mapred.skip.reduce.auto.incr.proc.count mapreduce.reduce.skip.proc-count.auto-
incr

mapred.skip.reduce.max.skip.groups mapreduce.reduce.skip.maxgroups

mapred.speculative.execution.slowNodeTh
reshold

mapreduce.job.speculative.slownodethres
hold

mapred.speculative.execution.slowTask
Threshold

mapreduce.job.speculative.slowtaskthres
hold

mapred.speculative.execution.speculative
Cap

mapreduce.job.speculative.speculativecap

mapred.submit.replication mapreduce.client.submit.file.replication

mapred.system.dir mapreduce.jobtracker.system.dir

mapred.task.cache.levels mapreduce.jobtracker.taskcache.levels

mapred.task.id mapreduce.task.attempt.id

mapred.task.is.map mapreduce.task.ismap

mapred.task.partition mapreduce.task.partition

mapred.task.profile mapreduce.task.profile

mapred.task.profile.maps mapreduce.task.profile.maps

mapred.task.profile.params mapreduce.task.profile.params

mapred.task.profile.reduces mapreduce.task.profile.reduces

mapred.task.timeout mapreduce.task.timeout

mapred.task.tracker.http.address mapreduce.tasktracker.http.address

mapred.task.tracker.report.address mapreduce.tasktracker.report.address

mapred.task.tracker.task-controller mapreduce.tasktracker.taskcontroller

mapred.tasktracker.dns.interface mapreduce.tasktracker.dns.interface

mapred.tasktracker.dns.nameserver mapreduce.tasktracker.dns.nameserver

mapred.tasktracker.events.batchsize mapreduce.tasktracker.events.batchsize

mapred.tasktracker.expiry.interval mapreduce.jobtracker.expire.track
ers.interval

mapred.tasktracker.indexcache.mb mapreduce.tasktracker.indexcache.mb

mapred.tasktracker.instrumentation mapreduce.tasktracker.instrumentation

mapred.tasktracker.map.tasks.maximum mapreduce.tasktracker.map.tasks.maximum

mapred.tasktracker.memory_calculator_plu
gin

mapreduce.tasktracker.resourcecalculator
plugin

264 | Appendix: Deprecated Configuration Properties

www.it-ebooks.info

http://www.it-ebooks.info/

Original Property Name New Property Name

mapred.tasktracker.memorycalculatorplugin mapreduce.tasktracker.resourcecalculator
plugin

mapred.tasktracker.reduce.tasks.maximum mapreduce.tasktracker.reduce.tasks.maxi
mum

mapred.tasktracker.taskmemorymanager.moni
toring-interval

mapreduce.tasktracker.taskmemoryman
ager.monitoringinterval

mapred.tasktracker.tasks.sleeptime-
before-sigkill

mapreduce.tasktracker.tasks.sleeptimebe
foresigkill

mapred.temp.dir mapreduce.cluster.temp.dir

mapred.text.key.comparator.options mapreduce.partition.keycomparator.options

mapred.text.key.partitioner.options mapreduce.partition.keyparti
tioner.options

mapred.textoutputformat.separator mapreduce.output.textoutputformat.separa
tor

mapred.tip.id mapreduce.task.id

mapred.used.genericoptionsparser mapreduce.client.genericoptions
parser.used

mapred.userlog.limit.kb mapreduce.task.userlog.limit.kb

mapred.userlog.retain.hours mapreduce.job.userlog.retain.hours

mapred.work.output.dir mapreduce.task.output.dir

mapred.working.dir mapreduce.job.working.dir

mapreduce.combine.class mapreduce.job.combine.class

mapreduce.inputformat.class mapreduce.job.inputformat.class

mapreduce.jobtracker.permissions.super
group

mapreduce.cluster.permissions.supergroup

mapreduce.map.class mapreduce.job.map.class

mapreduce.outputformat.class mapreduce.job.outputformat.class

mapreduce.partitioner.class mapreduce.job.partitioner.class

mapreduce.reduce.class mapreduce.job.reduce.class

min.num.spills.for.combine mapreduce.map.combine.minspills

reduce.output.key.value.fields.spec mapreduce.fieldsel.reduce.out
put.key.value.fields.spec

security.job.submission.protocol.acl security.job.client.protocol.acl

security.task.umbilical.protocol.acl security.job.task.protocol.acl

sequencefile.filter.class mapreduce.input.sequencefileinputfil
ter.class

sequencefile.filter.frequency mapreduce.input.sequencefileinputfil
ter.frequency

Deprecated Configuration Properties | 265

www.it-ebooks.info

http://www.it-ebooks.info/

Original Property Name New Property Name

sequencefile.filter.regex mapreduce.input.sequencefileinputfil
ter.regex

session.id dfs.metrics.session-id

slave.host.name mapreduce.tasktracker.host.name

tasktracker.contention.tracking mapreduce.tasktracker.contention.tracking

tasktracker.http.threads mapreduce.tasktracker.http.threads

topology.node.switch.mapping.impl net.topology.node.switch.mapping.impl

topology.script.file.name net.topology.script.file.name

topology.script.number.args net.topology.script.number.args

user.name mapreduce.job.user.name

webinterface.private.actions mapreduce.jobtracker.webinterface.trusted

266 | Appendix: Deprecated Configuration Properties

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols
* (asterisk) everyone permitted, access control

list, 156

A
absolute path, 21
access control list (ACL), 156
access switches, 69
access time, 66
ACL (access control list), 156
acl-administer-jobs, 157
acl-submit-job, 157
Active Directory, 164
administrative web interface, 35
administrators, 142
AES-128, 146
AES-256, 146
AFR (annualized failure rate), 213
alert thresholds, 239
allocations tags, 182
alternatives system, CDH, 84
Amazon Web Services power outage, 220
annualized failure rate (AFR), 213
Apache Software Foundation (ASF), 41
APIs, HDFS, 20, 23
appenders, 91
application container, 38
application data, swapping, 62, 124
application master (YARN), 38
Apt repository, 42
apt-get format repository, Cloudera, 81
AS (authentication server), 138
ASF (Apache Software Foundation), 2, 41
atime, 66

attempt of task, 35
authentication

within Hadoop, 140
performed before authorization, 136
and resource allocation, 167

authentication server (AS), 138
authorization

in Flume, 163
in HBase, 160
in HDFS, 153
in Hive, 159
in Hue, 161
inherently service specific, 136
in MapReduce, 155–159
in Oozie, 160
in Pig, Cascading, Crunch, 163
and resource allocation, 167
in Sqoop, 161
in ZooKeeper, 163

automatic failover mode, 16, 100, 111
automatic parallelization, 26
available capacity, 175
AWS, Amazon, 4

B
backup, 249

distributed copy (distcp), 250–252
of namenode metadata, 254
parallel data ingestion, 252

balancer utility, HDFS, 95
bandwidth

1 vs. 10 Gb networks, 69
balancing, 95, 204
datanodes and, 10, 196
MapReduce and, 33

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

267

www.it-ebooks.info

http://www.it-ebooks.info/

oversubscription of, 70, 124
reducers and, 128
spine fabric and, 72
utilization of, 241

banned.users, 152
batch data processing, MapReduce as, 32
batch performance, 7
Beeswax, 161
bidirectional data transfer, 3
big data, 5
BigTable, Google, 4
Bigtop, Apache, 89
blacklist, job-level, 37
blade systems, 52, 133
BLOCK compression, 126
block data, balancing HDFS, 202
block locations, 11

block placement policy, 130
displaying, 22, 223
outdated, 13
and performance, 63

block pools, 19, 113
block reports, 11

not written to disk, 18
regarding failed path, 205
traffic from, 67

block size, 8, 169
block tokens, 139
bonded NICs, 46
bootstrapping namenodes, 108–112
bottlenecks

diagnosing, 221–224
and mapred.reduce.tasks value, 128
and multiple racks, 133
in processing pipeline, 121
reducer skew, 52

break out cables, 73
buffer size, 95

C
Capacity Scheduler (cap scheduler)

choice of, 180, 185–191
configuration, 187–191
deprecated memory related parameters,

187
new job acceptance, 190
and physical machine resources, 186

capacity-scheduler.xml, 86, 187
Cascading, 163

Cassandra, Apache, 4
CDH (Cloudera’s Distribution Including

Apache Hadoop), 42
dependency on Oracle RPM, 56
downloading Apache Hadoop from, 80–84
and federation, 113
FUSE HDFS support, 23

CentOS, 54
default issues with, 59, 64
init scripts on, 80
uid numbering in, 152

centralized account management, 164
cgroups, Linux, 194
checkpoints, 16, 94
Chef, 54, 62, 164, 195
child tasks

environment variables for, 88
failures of, 36

Cisco Nexus 7000 series switches, 71
ClassLoader, Java, 87
client ViewFS mount table configuration, 119
Cloudera’s Distribution Including Apache

Hadoop (CDH), 42
dependency on Oracle RPM, 56
downloading Apache Hadoop from, 80–84
and federation, 113
FUSE HDFS support, 23

cluster-id, 114
clusters, 2, 195

(see also planning a Hadoop cluster)
adding storage to, 9
administrator of, 155
cluster-level checks, 116, 248
combining, 135
compute capacity of, 170
configuration of, 85, 212
distribution switch, 71
hardware requirements, 46, 48
HDFS maintenance tasks, 196–205
housekeeping traffic, 67, 71
managing Hadoop processes, 195
MapReduce maintenance tasks, 205–208
one job per MapReduce, 34
owner of, 155
sample growth plan for, 50
size growth projections, 51
starting/restarting, 11

codecs, pluggable compression, 126
colocated clients, 203

268 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

command line security issue with Hive, 165
command line tools, 98, 101
command-line tools, 20–23
committed memory, 242
commodity hardware, 45, 46, 51
Common subproject, 76
compute resources, 50
concatenation of devices, 64
concurrent task processing, 35, 49
conf directory, 78, 85, 90
configuration

and configuration management systems, 54,
164

of Hadoop, 84–88
of Hadoop security, 143–153
of logging, 90
taskcontroller.cfg, 142

console appender, 91
context switching, 35, 230
copy phase, timing of, 30
-copyFromLocal command, 22
copying files to/from HDFS, 22
-copyToLocal command, 22
core switches, 71, 130, 133, 221
core-site.xml, 86, 87

and namenode service, 102
namenode URL location, 21
with security properties, 147
and topology, 132

CPU and memory (see memory utilization)
CRC32 checksum, 251
credentials error, 137
cron daemon, 56
cross realm trusts, 164
Crunch, 163

D
daemons, 9

(see also datanodes (DN))
(see also jobtrackers)
(see also namenodes (NN))
(see also secondary namenode)
(see also tasktrackers)
configuring, 60, 85, 90
cron, 56
environment variables for, 88

data access abstraction services, 4
data backup, 249

distributed copy (distcp), 250–252

of namenode metadata, 254
parallel data ingestion, 252

data disks, 9
data ingest nodes, 203
data locality, 33, 130, 179, 202
data packets, 13
datanodes (DN), 9

adding new, 202
and bandwidth, 204
and block data, 94
data directories, 55
decommissioning of, 98, 197
directories and permissions for, 61, 93
and failed paths, 205
and heartbeats, 10, 19, 67
host-level checks of, 240
and Kerberos authentication, 141
troubleshooting, 223

Dean, Jeffrey, 25
Debian (Deb) packages, 42, 54, 61, 75, 81
default values, 87
defaultMinSharePreemptionTimeout element,

184
defaultPoolSchedulingMode element, 184
delayed task assignment, 179
deleted files, recovering, 98
Dell, 4
demand, pool, 174
deployment layout, 54
deprecated property names, 85, 101, 257
device names, 64
dfs context, 231
dfs.balance.bandwidthPerSec, 95, 204
dfs.block.access.token, 147
dfs.block.size, 95
dfs.client.failover.proxy.provider, 105
dfs.data.dir, 94, 121, 205, 240
dfs.datanode.address, 148
dfs.datanode.data.dir.perm, 149
dfs.datanode.du.reserved, 96, 121, 240
dfs.datanode.failed.volumes.tolerated, 97, 205
dfs.datanode.http.address, 149
dfs.datanode.kerberos.http.principal, 148
dfs.datanode.kerberos.principal, 148
dfs.datanode.keytab.file, 148
dfs.exclude, 86
dfs.ha.automatic-failover.enabled, 106
dfs.ha.fencing.methods, 103, 105
dfs.ha.namenodes, 104

Index | 269

www.it-ebooks.info

http://www.it-ebooks.info/

dfs.host.exclude, 98
dfs.hosts, 97, 225
dfs.hosts.exclude, 197, 225
dfs.https.address, 148
dfs.https.port, 148
dfs.include, 86
dfs.name.dir, 93, 101, 240
dfs.namenode.handler.count, 96
dfs.namenode.kerberos.http.principal, 148
dfs.namenode.kerberos.principal, 147
dfs.namenode.keytab.file, 147
dfs.namenodes.http-address, 105
dfs.namenodes.rpc-address, 104
dfs.namenodes.shared.edits.dir, 105
dfs.nameservices, 104
dfs.permissions.supergroup, 95
dfs.safemode.extension, 195
dfs.safemode.threshold.pct, 195
diagnosing problems, 209
Diagnostic and Statistical Manual of Mental

Disorders (DSM), 211
direct support, 3
directories

and disk space quotas (HDFS), 168
and permissions (Hadoop), 54, 61, 93
sample structure with space quotas, 168

dir_failures, 248
disk IO, excessive, 125
disks, 64
distcp (Distributed Copy) utility, 250–252
Distributed Cache feature, Hadoop, 89
distributed denial of service attacks, accidental,

143, 164
distributed filesystems, 8

(see also HDFS (Hadoop Distributed
Filesystem))

distribution switches, 70
DNS, 57–59
DRFA appender, 91
DRFAS appender, 91
drive controllers, 97
drive rotation speed, 53
drive seek operations, 8
DSM (Diagnostic and Statistical Manual of

Mental Disorders), 211
dual power supplies, 46

E
E-SPORE troubleshooting mnemonic, 215

East/West traffic, 67, 72
EC2, Amazon, 4
ECMP (equal cost multipath), 72
ecosystem projects, 159–164
edits write ahead log, 16
ElasticSearch, 4
empty the trash, 98
encryption algorithms, 146
enterprise class NFS filer, 101
environment troubleshooting, 215
environment variables and shell scripts, 87, 88,

103
equal cost multipath (ECMP), 72
/etc/fstab, 113, 119
/etc/hadoop, 80
/etc/krb5.conf, 145
/etc/rc.d/init.d, 80
/etc/security/limits.d, 84
/etc/yum.repos.d, 81
event correlation, 216
EventCounter appender, 91
execute permission value, HDFS, 153
exit codes, 104
ext3 filesystem, 8, 64
ext4 filesystem, 65
extent-based allocation, 65

F
Facebook Messages, 4
failover

forcing using haadmin command, 111
starting the controller, 110

failures
of child tasks, 36
of clock synchronization, 56
corrupted shared state information, 102
of datanode, 13
of disk or drive controller, 97, 204
down host, 103
DS quota exceeded exception, 169
failed path, 205
and failover types, 16, 100
and fault tolerance, 19, 26
hardware, 213
of HDFS, 37
human error, 211
importance of documenting, 217
IP 127.0.0.1, 60, 224–227
JDK bugs, 56

270 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

of jobtracker, 37
of master, 34, 45
misconfiguration, 212
of motherboard, 11
namenode abort from unwritable shared

edits path, 101
namenode reboot with default dfs.name.dir,

94
namenode timeout or connection refused,

97
“No valid credentials” security error, 137
over-committing memory, 62
and postmortems, 220
from power overload, 211
from relocating directory trees, 79
single points of, 16, 37, 38
of tasktracker or worker node, 37, 45
timeouts from application data swapping,

62
unavailable namenode continues writing,

101
using YARN to decrease, 38

Fair Scheduler (FS), 173–180
configuring, 180–184
delayed task assignment, 179
examples, 175–178, 184
killing tasks, 178
pools, 173–180
when to use, 180

fair share preemption, 179
fair-scheduler.xml, 86, 182
fairSharePreemptionTimeout element, 184
federation, verifying functionality of, 117
fencing options, 102
FIFO (first in, first out) scheduler, 127, 171
file access time, disabling, 66
file count quotas, 170
FileContext, 232
FileSystem APIs, 13
Filesystem In User space (FUSE), 23
filesystems

checking integrity of, 198–202
choosing, 64
and federation metadata, 18
managing, 14
mount options for, 66

firewall rules, 225
Flume, Apache, 3

authorization in, 163

CDH and, 42, 80
and colocated clients, 203
and parallel data ingestion, 253

fork() function, 63
framework placement decisions, 171
fs commands, 85
fs.checkpoint.dir, 94
fs.default.name, 21, 93, 225
fs.defaultFS, 119
fs.trash.interval, 98
fs.viewfs.mounttable, 119
fsck tool, 22, 198–202, 222
fsimage file, 14, 195
FSNamesystem MBean, 245
FUSE, 23
fuser command, 103

G
Ganglia, 233
garbage collection

monitoring, 243
and task scheduling, 186
tuning parameters, 89, 113

gateway services for federated access, 165
-get command, 22
get() method (FileSystem), 93
getCanonicalHostName(), 57
gethostbyaddr(), 58
gethostbyname(), 58
gethostname(), 57
getLocalHost(), 57
GFS (Google File System), 2
Ghemawat, Sanjay, 25
global namespace, 119
gmetad process, 233
gmond process, 233
graceful failover, 16
group user class, 154
group writable files in Hadoop, 77
groups, permitted, 86
GzipCodec, 126

H
HA packages, 18
ha.zookeeper.quorum, 106
haadmin command, 111
hadoop command, 88
hadoop dfsadmin -clrSpaceQuota, 170

Index | 271

www.it-ebooks.info

http://www.it-ebooks.info/

hadoop dfsadmin -refreshNodes, 197
hadoop dfsadmin -report, 132
hadoop dfsadmin -setSpaceQuota, 168
hadoop fs -count -q, 168
hadoop fs command, 20, 23
hadoop fsck, 202, 222
hadoop job -kill, 207
hadoop job -list, 207
Hadoop, Apache

advantages of, 193
command-line tools, 20–23
compared to relational databases, 41, 50, 53,

159, 165, 193
configuring, 84–88, 195
directories and permissions, 54, 61
downloading, 76
environment variables and shell scripts, 88
history of, 2, 76, 90
installing, 75–84
logging configuration, 90
managing processes, 195
owner and group, 78
simple and secure modes in, 136
and YARN, 193

hadoop-core-1.0.0.jar, 77
hadoop-env.sh, 78, 85, 89
hadoop-metrics.properties, 231, 233
hadoop-metrics2.properties, 238
hadoop-policy.xml, 86, 147
hadoop-tools-1.0.0.jar, 77
hadoop.log.dir, 91, 152
hadoop.mapreduce.jobsummary.log.file, 91
hadoop.mapreduce.jobsummary.logger, 91
hadoop.root.logger, 91
hadoop.security.authentication, 146
hadoop.security.authorization, 146
hadoop.security.log.file, 91
hadoop.security.logger, 91
Hadoop: The Definitive Guide (White), 5, 27
$HADOOP_CLASSPATH, 89
$HADOOP_CONF_DIR, 89
$HADOOP_daemon_OPTS variables, 88
$HADOOP_HOME, 78, 89, 90
HADOOP_LOG_DIR, 240
$HADOOP_PREFIX, 90
Hama, Apache, 4
Hammer cluster, Yahoo, 37
handlers, namenode, 96
hardware selection, 45–54

blades, SANs, and virtualization, 52
cluster sizing, 50
master hardware, 46–48
worker hardware, 48

hash partitioner, 28
/hbase, 113
HBase, Apache

access control in, 160
CDH and, 42, 80
incompatible with balancer, 202
running alone, 34
timeout errors, 62

HCatalog, Apache, 4
HDFS (Hadoop Distributed Filesystem), 2

access and integration, 20–24
adding a datanode to, 196
architecture overview, 10
authorization of Hive queries, 159
balancing block data in, 202
block size, 95
configuring for federated cluster, 113
coping with hardware failure, 213
creating a /tmp directory, 100
daemons, 9
decommissioning a datanode, 98, 197
design of, 8
designing directory structure for access

control, 165
and disk space consumption quotas, 168
as a distributed filesystem, 8
filesystem metadata, 14, 93
formatting the namenode, 99
goals of, 7
hdfs as user, 152
history of, 76
identification and location, 93
and Kerberos authentication, 137
maintenance tasks in, 196–205
multiple replicas in, 8, 34
and namenode high availability, 16
no current working directory on, 21
optimization and tuning, 95–98
and rack topology, 130
reading and writing data, 11–14
in secure mode, 142
super groups, 142
traffic types, 67
as a userspace filesystem, 8
verifying federation functionality in, 117

272 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

writing directly to, 3
hdfs namenode -bootstrapStandby, 109, 111
hdfs namenode -format, 108
hdfs-site.xml, 86, 87, 102, 147
hdfs.keytab, 146
health monitoring, 239

all Hadoop processes, 242
HDFS checks, 244–246
host-level checks, 240
MapReduce checks, 246

heap size
daemons, 241
Java, 88
using JMX REST servlet to check, 242
JVM, 122

heartbeats
and block pools, 113
and datanodes, 10, 19, 67
and identification, 57
and jobtrackers, 36, 175
and scheduling, 179, 186
and tasktrackers, 34, 36

Hedlund, Brad, 73
help information, 20
helper scripts by Bigtop, 89
high memory jobs, 186
high performance computing (HPC), 33
Hive, Apache, 2, 42, 80, 159, 165
HiveQL, 159
home directory, 55
host identification and naming

and datanodes, 97
Hadoop, 57–59, 143
hostname troubleshooting, 224–227
and misconfiguration errors, 214

HotSpot JVM, Oracle, 56, 57
HP, 4
HPC (high performance computing), 33
HTTP, 68, 129, 235, 252
HttpFS, 24
Hue, 42, 161
hypervisors, 52

I
identity, user, 60, 86, 136, 137
idle spindle syndrome, 94
IDS (intrusion detection system), 78
individual operation level scope, 85
InetAddress#getCanonicalHostName(), 57

InetAddress.getHostFromNameService(), 58
InetAddress.getLocalHost(), 57
Informatica, 4
infrastructure, 1 vs. 10 Gb network, 69
init scripts, 61, 195
input format, 27
input splits, 27, 171
instance, Kerberos, 138
interactive response times, 7
intermediate key value data, 27, 28
internal package mirroring, Cloudera, 84
intrusion detection system (IDS), 78
io.file.buffer.size, 95
io.sort.factor, 125
io.sort.mb, 124
IP address, 57, 60, 148, 225
IPMI reboot, 17, 102

J
jar files, Hadoop, 77, 87
Java

display hostname info utility, 58
HDFS and, 20
JDK, 56, 88
location of, 88
Pig and, 3

$JAVA_HOME, 88
JBOD (just a bunch of disks), 7, 45, 47, 53, 94
JCE policy files, 146
jclouds library, 4
JDBC, 3
JDK (Java Development Kit), 56, 88
JMX

configuration options, 88
MBeans, 234, 244
and metric values, 232
REST servlet, 242, 247
support for, 234

job configuration, 26, 85
job owner, 156
job-level blacklist, 37
jobtrackers, 27, 34, 46

and blacklisting of tasktrackers, 208
and capacity information, 175
communication with namenode, 171
defining cluster owner, 156
directories and permissions for, 61
failures of, 37, 38
and garbage collection pauses, 186

Index | 273

www.it-ebooks.info

http://www.it-ebooks.info/

hardware requirements, 48
heap monitoring on, 243
and heartbeats, 36, 175
memory footprint of, 186
reassigning of killed tasks, 207
restarting, 208
and RPC activity, 127
scheduler plug-in for, 170
scheduler plugin for, 127
security configuration for, 150

journal checksum calculation, 65
journaling, 64, 65, 101
JSA appender, 91
JSON, 235
JVM, Hotspot

fork operation, 63
garbage collection and task scheduling,

186
jvm context, 231
optimization and tuning, 122
and overhead, 33, 48

K
kadmin.local, 145
KDC (Key Distribution Center), 138, 145, 164
Kerberos, 136

how it works, 138–140
MIT Kerberos, 138–140, 141, 143, 164
“No valid credentials” error, 137
SPNEGO, 23

kernel tuning, 62
Key Distribution Center (KDC), 138, 145, 164
key value pair, 27
keytabs, 140, 141, 144–151
kill -9, 102
kill -15, 102
kinit command, 139, 141
klist command, 139

L
layouts, logger, 91
LDAP, 143
leaf switches, 69, 72
libraries, configuration of, 87
Linux

/dev/sd* device name, 64
/dev/vg* device name, 64
/etc/fstab file, 19

/etc/hosts file, 58
/etc/security/limits.conf file, 61
/etc/sysctl.conf file, 62
filesystem as federated namespace, 18
filesystem authorization issues, 60
HA project, 18
and heartbeat identification, 57
and MIT Kerberos, 138–140, 141, 143, 164
as operating system for Hadoop, 54
root privileges for install, 75
uid numbering, 152
usernames, 136
/usr/local or /opt, installing to, 77

Linux Control Groups, 194
Linux Logical Volume Manager (LVM), 64
local disk IO, excessive, 125
local mode, 120
local read short-circuiting, 149
localhost, IP reported as, 60, 227
location, block, 11
log directory, Hadoop, 55, 88
log4j package, 90
log4j.properties, 86, 91
loggers, 90–92
logical (pre-replication) size, 169
logs from namenode in standby state, 109
loopback interface, 36
-ls command, 21
LVM (Linux Logical Volume Manager), 64

M
Mac OS X, 58
machine names, permitted, 86
Mahout, Apache, 42
maintenance tasks

HDFS, 196–205
MapReduce, 205–208

malloc() function, 62
man 2 getrlimit, 123
managing namenode filesystem metadata, 14
manifest, Puppet, 62
manual failover mode, 16, 100, 112
map output, 121, 124–130, 206
map slots, 35, 49
map tasks

execution of, 27, 28, 52
locality preference of, 170
setting maximum number of, 123
size of memory circular buffer for, 124

274 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

slot usage of, 167
spill files for, 124, 125
traffic from, 68

mapred context, 231
mapred-queue-acls.xml, 86, 156, 157
mapred-site.xml

configuration properties, 86, 87
defines cluster administrator, 156
enable ACL, 157
identification and location properties, 120
security properties, 150
task scheduling, 180, 187

mapred.acls.enabled, 157
mapred.capacity-scheduler.default-init-accept-

jobs-factor, 189
mapred.capacity-scheduler.default-maximum-

active-tasks-per-queue, 189
mapred.capacity-scheduler.default-maximum-

active-tasks-per-user, 189
mapred.capacity-scheduler.defaults-supports-

priority, 190
mapred.capacity-scheduler.init-poll-interval,

190
mapred.capacity-scheduler.init-worker-

threads, 190
mapred.capacity-scheduler.maximum-system-

jobs, 191
mapred.capacity-scheduler.queue parameters,

187–190
mapred.child.ulimit, 123
mapred.cluster.administrators, 157
mapred.cluster.map.memory.mb, 191
mapred.cluster.max.map.mb, 191
mapred.cluster.max.reduce.mb, 191
mapred.cluster.reduce.memory.mb, 191
mapred.compress.map.output, 125
mapred.fairscheduler.allocation.file, 180
mapred.fairscheduler.allow.undeclared.pools,

181
mapred.fairscheduler.assignmultiple, 181
mapred.fairscheduler.assignmultiple.maps,

181
mapred.fairscheduler.assignmultiple.reduces,

181
mapred.fairscheduler.eventlog.enabled, 182
mapred.fairscheduler.poolnameproperty, 180
mapred.fairscheduler.preemption, 181
mapred.fairscheduler.preemption.only.log,

182

mapred.fairscheduler.sizebasedweight, 181
mapred.fairscheduler.weightadjuster, 181
mapred.java.child.opts, 122, 125
mapred.job.tracker, 120
mapred.job.tracker.handler.count, 127
mapred.job.tracker.taskScheduler, 180, 187
mapred.jobtracker.restart.recover, 208
mapred.jobtracker.taskScheduler, 127
mapred.keytab, 146
mapred.local.dir, 121, 152, 205, 240, 248
mapred.map.output.compression.codec, 126
mapred.output.compression.type, 126
mapred.queue.names, 157, 159, 187
mapred.reduce.parallel.copies, 127, 128
mapred.reduce.slowstart.completed.maps, 30,

129
mapred.reduce.tasks, 128
mapred.task.tracker.task-controller, 151
mapred.tasktracker.group, 152
mapred.tasktracker.map.tasks.maximum, 123
mapred.tasktracker.reduce.tasks.maximum,

123
MapReduce, 33–39

adding a tasktracker, 205
and blacklisted tasktrackers, 207
and client job submission, 26
compared with relational databases, 31, 37,

170, 206
coping with hardware failure, 213
decommissioning a tasktracker, 206
dividing jobs into tasks, 96
drawbacks of using, 32
FIFO (first in, first out) scheduler, 127, 171
four stages of, 26–33
framework APIs, 25
history of, 2, 76
identification and location, 120
inherently aware of HDFS, 33
killing a job in, 206
killing a task in, 207
local directories for, 55
local disk IO, 125
local mode, 120
maintenance tasks, 205–208
map function, 25
map task execution, 27, 28, 68
mapred as unprivileged user, 142
maximizing HDFS capabilities, 8
monitoring of, 246

Index | 275

www.it-ebooks.info

http://www.it-ebooks.info/

optimization and tuning, 122–130
output compression, 125, 126
parallelism in, 171
and permitted users and groups, 86
and pluggable compression codecs, 126
programming model, 25–33
queue privileges in, 157
and rack topology, 130
reduce function, 29
reserving disk space for, 96
and scale, 26
schedulers, 170, 193

Capacity, 185–191
Fair Scheduler, 173–185
FIFO, 171–173

security configuration for, 150–153
and simplicity of development, 25
sort and shuffle phase, 29–32, 68, 125, 127
task failure and retry in, 206
tasktracker traffic and, 68

mapreduce.jobtracker.kerberos.https.principa
l, 150

mapreduce.jobtracker.kerberos.principal, 150
mapreduce.jobtracker.keytab.file, 151
mapreduce.tasktracker.group, 151
mapreduce.tasktracker.kerberos.https.princip

al, 151
mapreduce.tasktracker.kerberos.principal,

151
mapreduce.tasktracker.keytab.file, 151
“MapReduce: Simplified Data Processing on

Large Clusters” (Dean & Ghemawat),
25

master nodes
failures of, 34, 45
hardware selection for, 46

masters file, 87
maximum heap size, Java, 88
MBeans, JMX, 234, 244
md5sum command, 254
mean time between failures (MTBF), 213
mean time to failure (MTTF), 213
memory utilization

forking, 63
and hardware selection, 45–52
monitoring of, 35, 241
over-committing, 62
and task scheduling, 186
used vs. committed, 242

merge sorts, 30
metadata

and access time, 66
corruption of, 240
and federation, 113
and hardware implications, 47
host-level checks of, 240
namenode filesystem, 11, 14, 18, 254
in rpm package, 79
secondary namenode filesystem, 94

metric plugin, 231
metrics servlet, 232, 236
metrics system, Hadoop, 230

Hadoop 0.20.0 and CDH3 (metrics1), 231–
234

JMX support, 234
REST interface, 235

Hadoop 0.20.203+ and CDH4 (metrics2),
237

SNMP, 239
metrics1, 230
metrics2, 230
Microsoft, 4
Microsoft Active Directory, 143
MicroStrategy, 4
min.user.id, 152
minimum share (min-share), 175
minimum share preemption, 179
mirroring, Cloudera internal package, 84
MIT Kerberos, 138–140, 141, 143
mitigation by architecture, 218
mitigation by configuration, 217
mitigation by process, 218
mmap(), 123
/mnt/filer/namenode-shared, 101
modular chassis switches, 70
monitoring systems

Hadoop metrics, 230–240
health monitoring, 239–248
overview, 229

motherboard failure, 11
mount points, overlapping, 120
mount table information, 119
mounting data partitions, 66
-moveFromLocal command, 22
-moveToLocal command, 22
MRv1, 38
MTBF (mean time between failures), 213
MTTF (mean time to failure), 213

276 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

multiple failed datanodes, 14
multiple replicas, 8, 34
multitenancy, 135, 159

N
namenode high availability (NN HA)

and automatic failover configuration, 105
basic configuration of, 104
enabling, 100
fencing options, 102
formatting and bootstrapping of, 108–112
initializing ZooKeeper for use with, 106
overview, 16
support for, 48

NameNodeInfo MBean, 244–246
namenodes (NN), 10, 46

cluster view, 116
confirming active status of, 110
directories and permissions for, 55, 61
and failed paths, 205
federation, 18, 113–119
filesystem metadata, 11, 14, 18, 254
formatting, 99
hardware requirements, 47
heap monitoring on, 243
host-level checks of, 240
and identification, 57
and IP address, 225
and Kerberos authentication, 141, 147
mapping of, 119
metric info on, 244
and permitted machine names, 86
and ports, 93
and RPC activity, 97
single namenode view, 116
starting or stopping, 195
unavailability of, 12
URL for location of, 21, 93
worker threads/handlers, 96

namespace federation, 18
namespace, global, 119
NAS (network attached storage), 7, 33, 52
Netezza, 3
Netflix postmortem, 220
network attached storage (NAS), 7, 33, 52
network bandwidth consumption, 241
network design, 66

1 vs. 10 Gb networks, 69
1 vs. 10Gb networks, 71, 72

bottlenecks, 133
network partitions, 214, 222
network usage in Hadoop, 67
typical network topologies, 69–73

network interface cards (NICs), 46
network latency checks, 242
Nexus 7000 series switches, Cisco, 71
NFS filer, 16, 101
NICs (network interface cards), 46
node manager (YARN), 38
nodes, 34, 46
NoEmitMetricsContext, 232
non-graceful failover, 16
non-ssh based fencing method, 103
non-zero exit codes, 36
noncollocated clients, 67
nonqualified hostname, 58
-norandkey option, 141, 145
North/South traffic, 67, 71
NTP configuration, 56
NullContext plug-in, 231, 234

O
Oozie, Apache, 4, 42, 160
operating system selection and preparation, 46,

54
deployment layout, 54
hostnames, DNS, and identification, 57–59
software, 56
users, groups, and privileges, 60–62

Oracle, 3, 4
org.apache.hadoop.hdfs.server.namenode.FS

Namesystem.audit, 91
org.apache.hadoop.io.compress.DefaultCodec

, 126
org.apache.hadoop.io.compress.GzipCodec,

126
org.apache.hadoop.io.compress.SnappyCodec

, 126
org.apache.hadoop.mapred.CapacityTaskSche

duler, 187
org.apache.hadoop.mapred.DefaultTaskContr

oller, 151
org.apache.hadoop.mapred.FairScheduler,

180
org.apache.hadoop.mapred.JobInProgress

$JobSummary, 91
org.apache.hadoop.mapred.JobQueueTaskSc

heduler, 127

Index | 277

www.it-ebooks.info

http://www.it-ebooks.info/

org.apache.hadoop.mapred.LinuxTaskContro
ller, 151

org.apache.hadoop.metrics.file.FileContext,
232

org.apache.hadoop.metrics.ganglia.GangliaCo
ntext, 233

org.apache.hadoop.metrics.ganglia.GangliaCo
ntext31, 233

org.apache.hadoop.metrics.spi.NoEmitMetric
sContext, 232

org.apache.hadoop.metrics.spi.NullContext,
232

org.jets3t.service.impl.rest.httpclient.RestS3Se
rvice, 91

orthogonal features, 20
OS user, 137
“other” user class, 154
OutOfMemoryError, 242
output format, 31
output troubleshooting, 216
overcommitting memory, 62
overlapping mounts, 120
overriding properties, 87
oversubscription, 70, 124
owner user class, 154

P
package installation, 78
packets, 13
PAM (Pluggable Authentication Modules), 61
parallelization

limitations of, 32
and MapReduce, 171
parallel data ingestion, 252

parentheses, use of, 103
partitioner, 28
password security, 139, 142, 145
patch releases, 42
path, failed, 205
patterns, troubleshooting, 216
PDUs (power distribution units), 17
Pentaho, 4
performance issues

access time, 66
balancing data, 202
delayed task assignment, 179
disk configuration, 63
garbage collection events, 243
idle spindle syndrome, 94, 121

monitoring performance, 233
“mystery bottleneck”, 221–224
oversubscription, 124
swapping, 241
virtualization and, 52

permissions (HDFS), 61, 101, 153
physical (post-replication) size, 169
physical and virtual memory utilization, 241
physical locality of machines, 130
pid directory, Hadoop, 55, 88
Pig, Apache, 3, 42, 80, 159, 163
planning a Hadoop cluster

blades, SANs, and virtualization, 52
cluster sizing, 50
disk configuration, 63–66
hardware selection, 45–49
kernel tuning, 62–63
network design, 66–73
operating system selection and preparation,

54–62
picking a distribution and version, 41–44

Pluggable Authentication Modules (PAM), 61
pluggable compression codecs, 126
plugins, 161, 231
poolMaxJobsDefault element, 184
pools, 19, 174–179, 181, 184
ports

embedded HTTPS server, 148
mapred.job.tracker, 121
namenode, 93
in secure mode, 147

POSIX, 57, 153
postfix, 57
postmortems, 220
power distribution units (PDUs), 17
preventative maintenance, 219
primary namenode, starting the, 109
primary, Kerberos, 138
principals

defined, 138
and hostnames, 143
MapReduce, 151
parameter, 147
unique for each worker, 140, 144

prioritized FIFO queues, 172
process presence checks, 242
processes, starting and stopping, 195
processor utilization, 241
prod-analytics, 114

278 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

properties
deprecated names, 85, 101
overriding, 87

proxy services for federated access, 165
Puppet, 54, 62, 164, 195
-put command, 22

Q
queue administrator, 156
queue starvation, 186
quota space accounting, 168

R
Rabkin, Ari, 212
rack topology, 12, 67, 130–133
Rackspace Cloud, 4
RAID, 7, 9, 45, 46, 53
RAM requirements, 47
RDBMS, 3, 135
read path, HDFS, 12
read permission value, HDFS, 153
reading and writing data, 11–14
realm, Kerberos, 138
“reboot it” syndrome, 219
recipe, Chef, 62
RECORD compression, 126
reduce function, 25, 68
reduce tasks

intermediate map output data, 127
output file name, 31
and reducer skew, 52
setting maximum for, 123, 128
slot usage, 35, 49, 167
starting early, 129

relational databases
Hadoop compared to, 41, 50, 53, 159, 165,

193
MapReduce compared to, 31, 37, 170, 206

remote procedure calls (RPC), 34, 102, 120
replay attacks, 140
replication

of blocks, 8, 67, 204
changing replication factor, 22
defined, 9
and hardware requirements, 48
pre- and post-replication size, 169
and rack topology, 130
and replication pipeline, 13, 222

troubleshooting with fsck, 201
report failure, 36
Representational State Transfer (REST)

HttpFS service, 24
JMX servlet, 242, 247
JSON servlet, 235
WebHDFS API for HDFS, 23

resource management, 167
(see also Fair Scheduler)
Capacity Scheduler, 185–191
current research on, 193
FIFO scheduler, 171
HDFS quotas, 168–170
MapReduce schedulers, 170
and resource exhaustion, 213, 216
and resource starvation, 173
tools to understand, 216

resource manager (YARN), 38
resource troubleshooting, 216
REST (Representational State Transfer)

HttpFS service, 24
JMX servlet, 242, 247
JSON servlet, 235
WebHDFS API for HDFS, 23

retrans values, 101
RFA appender, 91
RHEL (RedHat Enterprise Linux)

CDH through, 42
default issues with, 59, 64
and ext4 filesystem, 65
Hadoop on, 54
init scripts, 80
uid numbering in, 152

Robinson, Henry, 214
root logger, 91
round-robin database (RRD) files, 233
RPC (remote procedure calls), 34, 102, 120
rpc context, 231
RPM package, 56, 61, 75, 81
RRD (round-robin database) files, 233

S
safe mode, Hadoop, 195
SANs (storage area networks), 7, 33, 52
SAS, 4
scale out approach, 18
scripts, rack topology, 131
secondary namenode, 9, 46

directories and permissions for, 61

Index | 279

www.it-ebooks.info

http://www.it-ebooks.info/

hardware requirements, 48
heap monitoring on, 243
not a namenode backup, 11
setting process interval, 16
and standby namenode, 17, 102

secure mode, Hadoop, 76, 136, 139, 141
security, Hadoop, 133

account management, 164
configuring, 143–153
how to decide on, 164
local read short-circuiting, 149
and secure mode, 76, 136, 139, 141

SecurityLogger, 91
sendmail, 57
SequenceFile format, 126
service level agreements (SLAs), 170, 172, 173
service specific tickets, 139
service-specific authorization, 136
session keys, 139
setgid permission, 154
sethostname(), 58
-setrep command, 22
setuid permission, 154
setuid task-controller, 86, 142, 151
share nothing system, MapReduce as, 26
shared edits directory, 101
shared secret encryption model, 139
shared storage systems, 53
shell fencing method, 103
shell scripts, 87, 88
shotgun debugging, 217
simple mode, Hadoop, 136, 141
Simple Network Management Protocol

(SNMP), 239
single points of failure, 16, 37, 38
SLAs (service level agreements), 170, 172, 173
slave process, 26, 46
slaves file, 86
slices, filesystem, 19
slots, 34, 35, 170
small files problem, 47
SMART errors, 240
SnappyCodec, 126
snapshots, 249
SNMP (Simple Network Management

Protocol), 239
software related to Hadoop, 2, 56
sort and shuffle phase, 29–32, 68, 125, 127
sorting key data, 28

spill files for map tasks, 124, 125
spindle use, 121
spine fabric, 72
split brain scenario, 17
SQL, 2, 31
Sqoop, Apache, 3, 42, 80
SSH, 56
sshfence method, 103
stack, troubleshooting the, 215
standby namenode, 16, 109
start-*.sh helper scripts, 86
starting the primary namenode, 109
starvation, queue, 186
sticky bit permission, 154
STONITH techniques, 17, 102
storage area networks (SANs), 7, 33, 52
storm effect, 33
Streaming, Hadoop, 63, 123
sudo -u, 115, 142
superusers, 95, 99
SuSE Enterprise Linux, 42, 54
swapping

application data, 62, 124
switches, 69
symmetric key encryption model, 139

T
table with schema, logs as, 31
Tableau, 4
Talend, 4
tarball installation, 42

CDH, 81
Hadoop, 75, 76

$target_address, 103
$target_host, 103
$target_namenodeid, 103
$target_nameserviceid, 103
$target_port, 103
task slots, 34, 35, 170
task-controller, 80, 142, 152
taskcontroller.cfg, 86, 152
tasks

limiting virtual memory, 123
placement decisions, 194
scheduling, 35
vs. task attempt, 35
as unit of work, 26, 35, 49

tasktracker.http.threads, 129
tasktrackers, 35, 46

280 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

adding, 205
blacklisted, 207
decommissioning, 206
directories and permissions for, 61
embedded HTTP server, 129
in secure mode, 141
location of, 120
MapReduce maintenance of, 205
running as root, 142
and scheduler, 171, 186
security configuration for, 151

temp directory, Hadoop, 55
Teradata, 3
test scripts, 222
TGS (ticket granting service), 138
TGT (ticket granting ticket), 138, 140
thresholds

balancer, 204
metrics, 239

tiers, 69
timeo values, 101
timeouts

from namenode unavailability, 12
none built into shell fencing, 104

Ting, Kathleen, 212
TLA appender, 91
/tmp directory, HDFS, 100
topology.script.file.name, 132
total available capacity, 174
total capacity, 174
total cluster capacity, 175
traditional filesystem design, 8
traditional tree network, 69
traffic, Hadoop, 67, 222
trash recovery and emptying, 98
Tripwire, 78
troubleshooting

common failures and problems, 211–217
differential diagnosis applied to systems,

209
E-SPORE mnemonic, 215
“treatment and care”, 217–220
“war story” examples, 220

two tier tree network, 69

U
Ubuntu, 54
uids, 152, 164
umbilical protocol, 36

uname() syscall, 57
uncaught exceptions in child task, 36
Unlimited Strength Jurisdiction Policy Files,

146
upgrades, 38
uploading files, 22
used memory, 242
user classes

HDFS, 154
MapReduce, 155

user component, Kerberos, 138
user identity, 60, 86, 136, 137
user privileges, 103
userMaxJobsDefault element, 184
userspace filesystems, 8
/usr/bin, 80
/usr/include/hadoop, 80
/usr/lib, 80
/usr/lib/hadoop-0.20, 84
/usr/libexec, 80
/usr/sbin, 80
/usr/share/doc/hadoop, 80

V
version issues

and namenode high availability, 15, 18
picking a distribution and version, 41–44
and YARN, 38

vfork() function, 63
ViewFS, 19, 119–120
viewfs://table-name/, 119
virtual memory, 123
virtualization, 52
virtualized environments, 72
vm.overcommit_memory parameter, 62
vm.swappiness parameter, 62
Voldemort, 4

W
WAL (write ahead log), 15
web interface

for jobtracker, 35
for tasktracker, 36

WebHDFS, 23
weight, pool, 177, 181
Whirr, Apache, 4
White, Tom, 5, 27
worker hardware selection, 48

Index | 281

www.it-ebooks.info

http://www.it-ebooks.info/

worker nodes, 26
failures of, 45
and Kerberos authentication, 140
typical hardware configurations for, 49

workflow security, Oozie, 160
workloads, Hadoop vs. RAID, 10
write ahead log (WAL), 15
write path, HDFS, 13
write permission value, HDFS, 153
write rate bottleneck, diagnosing, 221–224
write-once block replication, 8

X
XFS filesystem, 65
XML configuration files, Hadoop, 87
XML files, deprecated property names in, 85
-Xms, 122
-Xmx, 122

Y
Yahoo!, 185
YARN (Yet Another Resource Negotiator), 37,

193
yum format repository, Cloudera, 81–83
Yum repository, Cloudera, 42

Z
Zaharia, Matei, 173, 179
“zebra” problems, 210
ZNodes, 163
ZooKeeper, Apache, 4, 42

authorization in, 163
CDH and, 163
initializing, 106
ZKFC (ZooKeeper Failover Controller),

106
Zypper repository, 42

282 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author
Eric Sammer is currently a Principal Solution Architect at Cloudera where he helps
customers plan, deploy, develop for, and use Hadoop and the related projects at scale.
His background is in the development and operations of distributed, highly concurrent,
data ingest and processing systems. He’s been involved in the open source community
and has contributed to a large number of projects over the last decade.

Colophon
The animal on the cover of Hadoop Operations is a spotted cavy, or lowland paca. The
large rodent goes by different names depending on where it lives: tepezcuintle in Mexico
and Central America, pisquinte in Costa Rica, jaleb in the Yucatán peninsula, conejo
pintado in Panamá, guanta in Ecuador, and so on. The name comes from the now
extinct Tupian language of Brazil, meaning “awaken” and “alert.”

The paca has coarse fur and strong legs, at the end of which are four digits in the front
and five on the back; pacas use their nails as hooves. Usually weighing in about 13 to
26 pounds, the paca usually has two litters per year.

Overall, this rodent keeps to itself, often described as a quiet, solitary nocturnal animal.
They live in burrows that they dig themselves, about seven feet into the ground. Pacas
prefer to live near water, which is where they tend to run for escape when threatened.
Living in the tropical Americas means a diet of fruit such as avocado and mango as well
as leaves, stems, roots, and seeds. These animals are great climbers and gather their
own fruit. Considered a pest for farmers harvesting yam, sugar cane, corn, and cassava,
the lowland paca are hunted for their delicious meat in Belize.

The cover image is from Shaw’s Zoology. The cover font is Adobe ITC Garamond. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont’s TheSansMonoCondensed.

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	Chapter 2. HDFS
	Goals and Motivation
	Design
	Daemons
	Reading and Writing Data
	The Read Path
	The Write Path

	Managing Filesystem Metadata
	Namenode High Availability
	Namenode Federation
	Access and Integration
	Command-Line Tools
	FUSE
	REST Support

	Chapter 3. MapReduce
	The Stages of MapReduce
	Introducing Hadoop MapReduce
	Daemons
	Jobtracker
	Tasktracker

	When It All Goes Wrong
	Child task failures
	Tasktracker/worker node failures
	Jobtracker failures
	HDFS failures

	YARN

	Chapter 4. Planning a Hadoop Cluster
	Picking a Distribution and Version of Hadoop
	Apache Hadoop
	Cloudera’s Distribution Including Apache Hadoop
	Versions and Features
	What Should I Use?

	Hardware Selection
	Master Hardware Selection
	Namenode considerations
	Secondary namenode hardware
	Jobtracker hardware

	Worker Hardware Selection
	Cluster Sizing
	Blades, SANs, and Virtualization

	Operating System Selection and Preparation
	Deployment Layout
	Software
	Hostnames, DNS, and Identification
	Users, Groups, and Privileges

	Kernel Tuning
	vm.swappiness
	vm.overcommit_memory

	Disk Configuration
	Choosing a Filesystem
	ext3
	ext4
	xfs

	Mount Options

	Network Design
	Network Usage in Hadoop: A Review
	HDFS
	MapReduce

	1 Gb versus 10 Gb Networks
	Typical Network Topologies
	Traditional tree
	Spine fabric

	Chapter 5. Installation and Configuration
	Installing Hadoop
	Apache Hadoop
	Tarball installation
	Package installation

	CDH

	Configuration: An Overview
	The Hadoop XML Configuration Files

	Environment Variables and Shell Scripts
	Logging Configuration
	HDFS
	Identification and Location
	Optimization and Tuning
	Formatting the Namenode
	Creating a /tmp Directory

	Namenode High Availability
	Fencing Options
	Basic Configuration
	Automatic Failover Configuration
	Initialzing ZooKeeper State

	Format and Bootstrap the Namenodes

	Namenode Federation
	MapReduce
	Identification and Location
	Optimization and Tuning

	Rack Topology
	Security

	Chapter 6. Identity, Authentication, and Authorization
	Identity
	Kerberos and Hadoop
	Kerberos: A Refresher
	Kerberos Support in Hadoop
	Configuring Hadoop security

	Authorization
	HDFS
	MapReduce
	Other Tools and Systems
	Apache Hive
	Apache HBase
	Apache Oozie
	Hue
	Apache Sqoop
	Apache Flume
	Apache ZooKeeper
	Apache Pig, Cascading, and Crunch

	Tying It Together

	Chapter 7. Resource Management
	What Is Resource Management?
	HDFS Quotas
	MapReduce Schedulers
	The FIFO Scheduler
	Configuration

	The Fair Scheduler
	Configuration

	The Capacity Scheduler
	Configuration

	The Future

	Chapter 8. Cluster Maintenance
	Managing Hadoop Processes
	Starting and Stopping Processes with Init Scripts
	Starting and Stopping Processes Manually

	HDFS Maintenance Tasks
	Adding a Datanode
	Decommissioning a Datanode
	Checking Filesystem Integrity with fsck
	Balancing HDFS Block Data
	Dealing with a Failed Disk

	MapReduce Maintenance Tasks
	Adding a Tasktracker
	Decommissioning a Tasktracker
	Killing a MapReduce Job
	Killing a MapReduce Task
	Dealing with a Blacklisted Tasktracker

	Chapter 9. Troubleshooting
	Differential Diagnosis Applied to Systems
	Common Failures and Problems
	Humans (You)
	Misconfiguration
	Hardware Failure
	Resource Exhaustion
	Host Identification and Naming
	Network Partitions

	“Is the Computer Plugged In?”
	E-SPORE

	Treatment and Care
	War Stories
	A Mystery Bottleneck
	There’s No Place Like 127.0.0.1

	Chapter 10. Monitoring
	An Overview
	Hadoop Metrics
	Apache Hadoop 0.20.0 and CDH3 (metrics1)
	JMX Support
	REST Interface
	Using the metrics servlet
	Using the JMX JSON servlet

	Apache Hadoop 0.20.203 and Later, and CDH4 (metrics2)
	What about SNMP?

	Health Monitoring
	Host-Level Checks
	All Hadoop Processes
	HDFS Checks
	MapReduce Checks

	Chapter 11. Backup and Recovery
	Data Backup
	Distributed Copy (distcp)
	Parallel Data Ingestion

	Namenode Metadata

	Appendix. Deprecated Configuration Properties
	Index

